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Why is Florida 
homeowners written in 
monoline companies? 
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Context and Literature 
 Capital allocation and multiline pricing: perfect markets with frictional costs of 

holding capital and ex post equal priority default rule
– Phillips, Cummins, Allen (JRI 1998)
– Myers, Read (JRI 2001)
– Sherris (JRI 2006)
– Ibragimov, Jaffee, Walden (JRI 2010) 
– Cummins (RMIR 2000): frictions caused by tax, regulation and agency 

problems 

 We assume the opposite: imperfect market but no frictional costs of capital
– Risk cost of capital is not a friction
– Rationale: catastrophe bond pricing

Introduction
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Context and Literature 
 Charge for risk using a non-additive distortion (spectral) risk measure (DRM)

– Wang (ASTIN 1996), Wang, Young, Panjer (IME 1997)

 Possible rationale: ambiguity averse investors charge for shape of risk
– Klibanoff, Marinacci & Mukerji (Econometrica 2005)

 DRMs are non-additive, but they are still consistent with general equilibrium
and no arbitrage prices
– De Waegenaere, Kast, and Lapied (IME 2003), Chateauneuf, Kast, Lapied

(Math Fin 1996)

Introduction
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Context and Literature 
 Diversification traps: Ibragimov, Walden (JB&F 2007) applies with very thick tails

 Ibragimov, Jaffee, Walden (Rev Fin 2018)
– Perfect market with frictional cost of holding capital 
– One-sided protection rather than risk pooling
– “Basic structure questions in a risk market with one-sided protection 

remain unanswered.”
– Show monoline solutions more likely when risks asymmetric or correlated
– We show qualitatively similar results with entirely different assumption 

 Presentation partly based on joint work with John Major (arxiv 2020) 

Introduction
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Four actors and market interactions 

 Standard simplifying assumptions: no expenses, no investment income
 One-period model
 𝑋𝑋 ∧ 𝑎𝑎 = min(𝑋𝑋,𝑎𝑎)

Market
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Insured buying behavior 
 Face mandatory / quasi-mandatory insurance requirement

– 60% of premium (Aon Benfield, 2015)

 Mandate is for third-party protection
– Insureds do not care about insurer solvency provided policy satisfies 

mandatory requirement, e.g., guarantee funds or judgment proof     

 Insureds are pure price buyers, do not see quality differences 

Insureds
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Regulator
 Solvency regulation necessary to ensure 

mandatory insurance effective,
Cummins (JoF 1988) 

 Regulatory capital standard risk functional 𝑎𝑎 = 𝑎𝑎(X) = 𝑎𝑎(total risk)
– Value at Risk (VaR) or tail value at risk 

 No other regulation beyond capital standard

Incorporeal: regulator is a formula 

Regulator
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Investor: ultimate risk bearer 
 Charge for risk, e.g., because ambiguity averse, 

but not necessarily risk averse

 Market price of capital explained by a distortion risk measure ρ
– ρ(X) gives market (ask) price of any loss payout distribution X
– DRMs are coherent, given by weighted average of TVaRs
– Law invariant: price of risk only depends on probability of loss 

Investor
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If price of risk only depends on probability of loss... 

 Distortion function g(s) = price to 
assume risk of paying 1 with 
probability s, a thin layer

 g(0) = 0

 g(1) = 1

 g increasing*

 g concave

 Higher loss = lower probability 
layers inherently more ambiguous

Price to Write Binary Bet

* Note: x-axis reversed!
Wang Transform, 0.5

Investor



© Convex Risk LLC | New York 11

Thin layer insurance pricing statistics from distortion function

ROE = 
𝑔𝑔 𝑠𝑠 −𝑠𝑠

)1−𝑔𝑔(𝑠𝑠

Loss Ratio = 
𝑠𝑠

)𝑔𝑔(𝑠𝑠

Premium to surplus leverage =
𝑔𝑔 𝑠𝑠

)1−𝑔𝑔(𝑠𝑠

Investor

Price to Write Thin Layer
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Translate from probability of loss to dollars of loss
 Apply inverse distribution function, 

as per simulation 

 Distortion thickens the tail
– Increases expectation
– Adds risk margin 

 Acts on probabilities not on loss
– Not a utility adjustment 
– Yarri dual utility 

 No objective events
– Events defined implicitly by 

probability 

Investor

Price to Write Thin Layer, dx
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Limited liability expected loss & pricing implied by a distortion

Expected loss
(LEV)

Market premium
Distorted expected loss

𝜌𝜌 𝑋𝑋 ∧ 𝑎𝑎 = �
0

𝑎𝑎
𝑔𝑔 𝑆𝑆 𝑥𝑥 𝑑𝑑𝑑𝑑 = �

0

𝑎𝑎
𝑥𝑥𝑔𝑔′ 𝑆𝑆 𝑥𝑥 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑 + 𝑎𝑎𝑎𝑎 )𝑆𝑆(𝑎𝑎

𝐸𝐸 𝑋𝑋 ∧ 𝑎𝑎 = �
0

𝑎𝑎
𝑆𝑆 𝑥𝑥 𝑑𝑑𝑑𝑑 = �

0

𝑎𝑎
𝑥𝑥𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑 + 𝑎𝑎𝑎𝑎 𝑎𝑎

transformed pdf
state price densitydistorted probability

Average life expectancy: add up number of birthdays (survival) and divide by 
population

Investor
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Composite pricing functional

 If functionals ρ and 𝑎𝑎 are monotonic, homogeneous, translation invariant, law 
invariant then so is composite

 Composite can fail to be sub-additive even when ρ and 𝑎𝑎 are both sub-additive 
because diversification improves coverage quality for X0 + X1 and hence it costs 
more

Capital markets 
determine cost of 

risk

𝜌𝜌 𝑋𝑋 ∧ 𝑎𝑎(𝑋𝑋)

Regulator 
determines 

amount of assets

Aggregate 
promises sold by 

insurer

Investor
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Intermediary insurer
 Limited liability entity with equal priority in default 

 Operates like a cat bond to minimize frictional costs of holding capital
– No transaction costs, no taxes
– No management: no principle-agent problems 
– Minimal regulation, no trapped capital
– Pure exposure to insurance risk, like a sidecars 

 Key functions: unambiguous pricing/results and enable limited liability

Incorporeal: insurer is a formula 

Insurer
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Loss payments: who gets what in default?
 Sold insurance promises

 Equal priority payment to policy i
with assets a

 𝑋𝑋𝑖𝑖 𝑎𝑎 sum to limited losses, 𝑋𝑋 ∧ 𝑎𝑎


𝑋𝑋∧𝑎𝑎
𝑋𝑋

= fixed payment pro rata 

factor applied to loss from each  
policy


𝑋𝑋𝑖𝑖
𝑋𝑋

= variable share of available 

assets for policy i applied to...

 𝑋𝑋 ∧ 𝑎𝑎 amount of assets available 
to pay claims

𝑋𝑋𝑖𝑖 𝑎𝑎 : = �
𝑋𝑋𝑖𝑖 𝑋𝑋 ≤ 𝑎𝑎
𝑎𝑎 ⁄(𝑋𝑋𝑖𝑖 𝑋𝑋) 𝑋𝑋 > 𝑎𝑎

= 𝑋𝑋𝑖𝑖
𝑋𝑋 ∧ 𝑎𝑎
𝑋𝑋

= 𝑋𝑋𝑖𝑖
𝑋𝑋
𝑋𝑋 ∧ 𝑎𝑎

𝑋𝑋 = 𝑋𝑋1 + ⋯+ 𝑋𝑋n

Insurer
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Archetype
 Two policy liabilities (debts) 

– X0: certain loss, 1000
– X1: lognormal, mean 1000, cv 2.0

 Counterparty holds probabilistic 
reserves, to 90th percentile
– 1000 for X0

– 2272 for X1

 Monoline
– X0 no default haircut 
– X1 has 27% default haircut  

 Pooled
– Assets 3272
– X1 has access to more assets in 

event of default, when it captures 
more than 70% (2272/3272) of 
assets

– Lowers haircut to 24%
– 3% transferred from X0 to X1

 Conclusion
– Expected value of 970 for X0, 

below promised actuarial value  

Insurer
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Expected loss and premium allocation by class and layer

Expected Loss = 𝐸𝐸 𝑋𝑋𝑖𝑖(𝑎𝑎) = ∫0
𝑎𝑎 𝐸𝐸 𝑋𝑋𝑖𝑖

𝑋𝑋
|𝑋𝑋 > 𝑥𝑥 𝑆𝑆 𝑥𝑥 𝑑𝑑𝑑𝑑 = ∫0

𝑎𝑎 𝛼𝛼𝑖𝑖 𝑥𝑥 𝑆𝑆 𝑥𝑥 𝑑𝑑𝑑𝑑

𝛼𝛼𝑖𝑖 𝑥𝑥

Premium = 𝜌𝜌 𝑋𝑋𝑖𝑖(𝑎𝑎) = ∫0
𝑎𝑎 𝐸𝐸∗ 𝑋𝑋𝑖𝑖

𝑋𝑋
|𝑋𝑋 > 𝑥𝑥 𝑔𝑔 𝑆𝑆 𝑥𝑥 𝑑𝑑𝑑𝑑 = ∫0

𝑎𝑎 𝛽𝛽𝑖𝑖 𝑥𝑥 𝑔𝑔 𝑆𝑆 𝑥𝑥 𝑑𝑑𝑑𝑑

𝛽𝛽𝑖𝑖 𝑥𝑥

 𝑋𝑋𝑖𝑖/𝑋𝑋 = variable share of 
available assets for policy i

 All quantities add-up

 No arbitrary choices

 Not marginal cost, not Aumann-
Shapley value 

Assumptions

 Price with DRM g

 Equal priority in default

Independence of  Xi not required

Relies on comonotonic additivity of DRM

Insurer
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Insured loss distributions  
 Two classes (lines) of insured

– X0 thin-tailed class: high frequency, 
low severity; Illinois personal auto

– X1 thick-tailed class: catastrophe 
exposed; Florida home

 Risk is a characteristic of class and not the individual insured

 Homogeneous loss model: distribution scales, no shape change 
– Results for a sub-pool of a class are proportional to the results for whole class, 

i.e., model loss ratio, Myers Read and GBM models are homogenous  
– Mildenhall (Risks 2017)

Insured
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Example: Thin- and Thick-tailed two-class model

 Classes independent, convenience only 
 X0 thin class, EL 75, CV 10%, gamma distribution, comparable to personal auto
 X1 thick class, EL 50, CV 53%, lognormal distribution, cat-exposed property 
 Portfolio CV 22%
 Initially, expensive pricing, weak capital standard

Insured
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How will risks pool? 
 Pools with the same class mix (e.g., monoline) can merge by homogeneity

 Pricing varies with mix: only one multiline pool (cheapest) 

 There are only three possible market structures
– Full pooling: one insurer
– Two monoline insurers
– One multiline pool insurer and one monoline insurer 

 Market defined by proportion t of risk class 1 in the pool, 0 ≤ t ≤ 1, and 

t = 0, 1 two monoline pools 
t = 0.5 full pooling 
0 < t < 0.5 class 0 fully pooled, class 1 split between pool and monoline
0.5 < t < 1 class 1 fully pooled, class 0 split between pool and monoline

Pooling
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Total loss density, by portfolio mix 0 ≤ t ≤ 1

 Pool outcome is  Xt = (1 – t )X0 + tX1

 Computations performed for 35 values of t

 Graphs show how shape of aggregate portfolio transitions from X0 to X1

Pooling
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Premium rates by class

 t, the proportion of X1, on x-axis

 Lines show rate for each class
– Blue X0 low, orange X1 high risk
– Green: blended pool rate

 Shaded bands at top show range 
from monoline loss cost and premium 
for each class

 Expected unlimited loss, before 
insurer default X0 = 150, X1 = 100; 
slightly less with limited capital

 Expensive pricing, weak capital 
standardAssumptions

 Wang hazard rho with 0.5 parameter
 Capital standard: 90% value at risk
 Premium rate = allocated premium / proportion of class, 

is comparable with monoline premium

Pooling
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Limited liability causes rate to bow up above monoline rate

 Pooling risky debt with certain debt 
benefits risky debt in default

 Benefit compensated through 
higher a priori premium

 Pool offers better coverage to 
riskier insureds = costs more 

 Cost to provide insurance even 
when no benefit received, e.g., 
basis risk 

Pooling
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Partial pooling equilibrium solution 

 Equilibrium solution, t = 0.179
– X0 and 22% of X1 are 

pooled; remaining 78% of X1
written monoline

 Why? 
– t > 0.179: X1 rate greater than 

monoline...X1 will not pool 
– t < 0.179: X1 insureds in pool get 

below monoline rate, with remainder 
monoline 

– Remainder will offer to pool with X0
at slightly higher rate until equilibrium 
reached at t = 0.179

– X1 pays monoline rate and X0
captures all diversification benefit

Hence Florida home-
owners not fully pooled

Pooling
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Sensitivity to cost of capital 

Wang 0.25 parameter Wang 1.5 parameter 

Pooling
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Stricter capital standard leads to full pooling outcome

 99.5% VaR capital standard (Solvency 
II level), base Wang 0.5 cost of capital

 When t = 0.5 is feasible for both
lines, it is the equilibrium solution
– If t ≠ 0.5, some insureds are

forced into monoline rate
– Monoline insureds offer to pool at 

more advantageous rate
– t ≠ 0.5 pool unravels

 At t = 0.5, all insureds pay lower 
multiline rate and no rational action 
can cause pool to unravel 

 DemoTech in FL offers weaker
standard

 Feasible region overlap includes 
50/50 pool

 X1 premium ~ 128 vs. 118 at p=0.9

Pooling
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Conclusions
 Pooling solution determined by subtle interaction between

– Relative tail thickness of X0 and X1

– Strength of capital standard
– Cost of capital

 Full pooling is more likely with
– Balanced tail thickness
– Stronger capital standard

 Impact of cost of capital indeterminate 

 Diversification benefit of pooling is eroded by economic transfers caused by 
limited liability, especially with weak capital standard 

Pooling
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Appendix
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Audit statistics and pricing summary 

 Example produced using aggregate 
Python package 
https://github.com/mynl/aggregate
https://aggregate.readthedocs.io/

 pip install aggregate
 aggregate program for t=0.50 

portfolio 

 Pricing results using 99.5% VaR and 90.0% capital and 
Wang 0.5 distortion for t=0.50 portfolio

 Market value liability = premium
 Note: by class rates shown in graphs are twice (divide by 

0.5) the amounts shown here

port MIX_thin_thick
agg X0 1 claim sev gamma 75.0 cv 0.1 fixed 
agg X1 1 claim sev lognorm 50.0 cv 0.5329 fixed

99.5% VaR 90.0% VaR

Model Details

https://github.com/mynl/aggregate
https://aggregate.readthedocs.io/
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Expected loss and premium allocation by class and layer

Expected Loss = 𝐸𝐸 𝑋𝑋𝑖𝑖(𝑎𝑎) = ∫0
𝑎𝑎 𝐸𝐸 𝑋𝑋𝑖𝑖

𝑋𝑋
|𝑋𝑋 > 𝑥𝑥 𝑆𝑆 𝑥𝑥 𝑑𝑑𝑑𝑑 = ∫0

𝑎𝑎 𝛼𝛼𝑖𝑖 𝑥𝑥 𝑆𝑆 𝑥𝑥 𝑑𝑑𝑑𝑑

𝛼𝛼𝑖𝑖 𝑥𝑥

Premium = 𝜌𝜌 𝑋𝑋𝑖𝑖(𝑎𝑎) = ∫0
𝑎𝑎 𝐸𝐸∗ 𝑋𝑋𝑖𝑖

𝑋𝑋
|𝑋𝑋 > 𝑥𝑥 𝑔𝑔 𝑆𝑆 𝑥𝑥 𝑑𝑑𝑑𝑑 = ∫0

𝑎𝑎 𝛽𝛽𝑖𝑖 𝑥𝑥 𝑔𝑔 𝑆𝑆 𝑥𝑥 𝑑𝑑𝑑𝑑

𝛽𝛽𝑖𝑖 𝑥𝑥

 𝑋𝑋𝑖𝑖/𝑋𝑋 = variable share of 
available assets for policy i

 All quantities add-up

 No arbitrary choices

 Not marginal cost, not Aumann-
Shapley value 

Assumptions

 Price with DRM g

 Equal priority in default

Independence of  Xi not required

Insurer



© Convex Risk LLC | New York 32

alpha function: proportion of expected loss by layer

Loss density = 𝛼𝛼𝑖𝑖 𝑥𝑥 𝑆𝑆 𝑥𝑥

Sum to 1.0

X0 Thin, EL 150 / 250 = 60%
X1 Thick, 
dominates
in tail
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E[Xi | X=x]: building block function for alpha and beta

𝛼𝛼𝑖𝑖 𝑥𝑥 𝑆𝑆 𝑥𝑥 = �
𝑥𝑥

∞𝐸𝐸 𝑋𝑋𝑖𝑖 𝑋𝑋 = 𝑡𝑡]
𝑡𝑡

𝑓𝑓𝑋𝑋 𝑡𝑡 𝑑𝑑𝑑𝑑

Avg Thick
≈ 125

Avg Thin
≈ 75

Condition 
on X = 200



© Convex Risk LLC | New York 34

 βi(x), solid line, is a risk adjusted version of αi(x), dashed, putting more weight 
on right tail

beta function: proportion of premium by layer

When αi(x) increases βi(x) is 
above αi(x), positive margins = 
Thick orange (solid above dashed)

When αi(x) decreases βi(x) is 
below αi(x), negative margins for 
some layers = Thin blue

Premium density = 𝛽𝛽𝑖𝑖 𝑥𝑥 𝑔𝑔 )𝑆𝑆(𝑥𝑥
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Margins by asset layer, by class

 Thick...αi(x) increases...βi(x) above αi(x)
 βi(x)g(S(x)) above αi(x)S(x) since g(S)>S
 Positive margins at all layers of capital

 Thin...αi(x) decreases...βi(x) below αi(x)
 βi(x)g(S(x)) may be below αi(x)S(x)
 Possible negative margins for low layers
 Eventual cumulative margin positive 

Margin = 𝛽𝛽𝑖𝑖 𝑥𝑥 𝑔𝑔 )𝑆𝑆(𝑥𝑥 − 𝛼𝛼𝑖𝑖 𝑥𝑥 𝑆𝑆 𝑥𝑥

g(S(x))

S(x)

𝛽𝛽(x)g(S(x))

𝛼𝛼(x)S(x)

Negative
margins
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Contact Information

Stephen Mildenhall, PhD, FCAS, ASA, CERA
Convex Risk LLC
New York, NY 100024
+1.312.961.8781 cell
steve@convexrisk.com

Graphic details: County size scaled to AAL estimates for hurricane, earthquake and severe weather using Gastner & Newman algorithm

mailto:stephen.mildenhall@aonbenfield.com
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