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Why is Florida
homeowners written in
monoline companies?



Introduction

Context and Literature

= Capital allocation and multiline pricing: perfect markets with frictional costs of
holding capital and ex post equal priority default rule

— Phillips, Cummins, Allen (JRI 1998)
— Myers, Read (JRI 2001)

— Sherris (JRI 2006)

— Ibragimoyv, Jaffee, Walden (JRI 2010)

— Cummins (RMIR 2000): frictions caused by tax, regulation and agency
problems

» \We assume the opposite: imperfect market but no frictional costs of capital
— Risk cost of capital is not a friction
— Rationale: catastrophe bond pricing
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Introduction

Context and Literature

» Charge for risk using a non-additive distortion (spectral) risk measure (DRM)
— Wang (ASTIN 1996), Wang, Young, Panjer (IME 1997)

» Possible rationale: ambiguity averse investors charge for shape of risk
— Klibanoff, Marinacci & Mukerji (Econometrica 2005)

= DRMs are non-additive, but they are still consistent with general equilibrium
and no arbitrage prices

— De Waegenaere, Kast, and Lapied (IME 2003), Chateauneuf, Kast, Lapied
(Math Fin 1996)
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Introduction

Context and Literature
» Diversification traps: Ibragimov, Walden (JB&F 2007) applies with very thick tails

= |bragimov, Jaffee, Walden (Rev Fin 2018)
— Perfect market with frictional cost of holding capital

— One-sided protection rather than risk pooling

— “Basic structure questions in a risk market with one-sided protection
remain unanswered.”

— Show monoline solutions more likely when risks asymmetric or correlated

— We show qualitatively similar results with entirely different assumption

» Presentation partly based on joint work with John Major (arxiv 2020)
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Four actors and market interactions

Regulator

Solvency
regulation Capital risk | Enforces
measure minimuimn
a = a(X) | capital
Total Premium _ Equity capital
P—oXAa | Intermediary | —a-—P
Insureds P ) Y < Investor
y Insurer ,
Losses, X A a Residual, (a — X)*

» Standard simplifying assumptions: no expenses, no investment income
= One-period model

* X Aa=min(X,a)
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Insureds

Insured buying behavior

» Face mandatory / quasi-mandatory insurance requirement
— 60% of premium (Aon Benfield, 2015)

Regulator

Solvency

regulation Capital risk Enforces

measure minimum
a = a(X) | capital

Total Premium " Equity capital
P =p(X A ‘| Intermediary [ —._P
Insureds PN y Q Investor
A Insurer ,
Losses, X Aa Residual, (a — X)*

» Mandate is for third-party protection

— Insureds do not care about insurer solvency provided policy satisfies
mandatory requirement, e.g., guarantee funds or judgment proof

» Insureds are pure price buyers, do not see quality differences
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Regulator

Regulator

= Solvency regulation necessary to ensure
mandatory insurance effective,

Cummins (JoF 1988) 9| O -

Solvency
regulation

Capital risk Enforces
measure minimum
a = a(X) | capital

Total Premium | " Equity capital
P =p(X A ‘| Intermediary [ —._P
px Ae) v v Investor
A Insurer ,
Losses, X A a Residual, (a — X)*

Incorporeal: regulator is a formula

Insureds

» Regulatory capital standard risk functional a = a(X) = a(total risk)
— Value at Risk (VaR) or tail value at risk

= No other regulation beyond capital standard
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Investor

Investor: ultimate risk bearer

= Charge for risk, e.g., because ambiguity averse,
but not necessarily risk averse

Regulator
olvenc,
regulation apital ris
a a
R " Equity capital
P =p(X A ‘| Intermediary [ —._P
e v v Investor
A Insurer
Losses, X Aa Residual, (a — X)*

Insureds

= Market price of capital explained by a distortion risk measure p
— p(X) gives market (ask) price of any loss payout distribution X
— DRMs are coherent, given by weighted average of TVaRs
— Law invariant: price of risk only depends on probability of loss
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Investor
|

If price of risk only depends on probability of loss...

y Price to Write Binary Bet = Distortion function g(s) = price to
' assume risk of paying 1 with
probability s, a thin layer
0.8
= 9(0)=0
= g(1)="1
premium =Yg(s)
047 * gincreasing*
loss s _ u g concave
0.2 3
0.0 = Higher loss = lower probability

1.0 0.8 0.6 0.4 0.2 0.0 layers inherently more ambiguous

s, exceedance probability

* Note: x-axis reversed!
Wang Transform, 0.5
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Investor

Thin layer insurance pricing statistics from distortion function

Price to Write Thin Layer

1.0

Loss Ratio = ——
g(s)

0.8

0.6

g(s)
1-g(s)

Premium to surplus leverage =

Price

0.4 1
margin = g(s) —

g(s)—s
1-g(s)

loss s

ROE =

0.2 1

0-0 1 I L) Ll
1.0 0.8 0.6 0.4 0.2 0.0

s, exceedance probability
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Investor
|

Translate from probability of loss to dollars of loss

= Apply inverse distribution function,

as per simulation
Price to Write Thin Layer, dx

1.0

= Distortion thickens the tail
— Increases expectation
— Adds risk margin

0.8 1

0.6 4

§ Equity
R | (x)

= Acts on probabilities not on loss o ;

I . Expected:

— Not a utility adjustment o lfoss |
— Yarri dual utility

0.0 T T T T
0 100 200 300 400 500

Loss x=F 11 -5)=5"1s)

= No objective events

— Events defined implicitly by
probability
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Investor

Limited liability expected loss & pricing implied by a distortion
a a

(ELXéJ\?)cted loss E[X N\ Cl] — f S(x)dx — f xf(x)dx + aS(a)
0 / 0 \

: - transformed pdf
distorted probability state price dgnsity

Market premium
Distorted expected loss . / . l
p(XANa) = f g(S(x))dx = f xg’(S(x))f(x)dx + ag(S(a))
0 0

Average life expectancy: add up number of birthdays (survival) and divide by
population
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Investor

Composite pricing functional

p(X Aa(X))

NN\

Capital markets Aggregate Regulator
determine cost of promises sold by determines
risk insurer amount of assets

= |f functionals p and a are monotonic, homogeneous, translation invariant, law
invariant then so is composite

= Composite can fail to be sub-additive even when p and a are both sub-additive
because diversification improves coverage quality for X, + X, and hence it costs
more
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Insurer

Intermediary insurer

» Limited liability entity with equal priority in default

Regulator

Solvency

regulation Capital risk Enforces

measure minimum
a = a(X) | capital

Total Premium || ) Equity capital
P =p(X A ‘| Intermediary [ —._P
o AG) Y ¢ Investor
. Insurer R
Losses, X Aa Residual, (a — X)*

Incorporeal: insurer is a formula

Insureds

» Operates like a cat bond to minimize frictional costs of holding capital
— No transaction costs, no taxes
— No management: no principle-agent problems
— Minimal regulation, no trapped capital
— Pure exposure to insurance risk, like a sidecars

» Key functions: unambiguous pricing/results and enable limited liability
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Insurer

Loss payments: who gets what in default?

= Sold insurance promises

X=X+ +X,

= Equal priority payment to policy i
with assets a

o Xi XSCl
'&m)_izﬂﬂK)X>a
XAa
_X_i ¥
=§XAa

= X;(a) sum to limited losses, X A a
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XA\a

= fixed payment pro rata

factor applied to loss from each
policy

X.
m ;l = variable share of available

assets for policy i applied to...

= X A a amount of assets available
to pay claims
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Insurer

Archetype

= Two policy liabilities (debts) = Pooled

— X,: certain loss, 1000 — Assets 3272

— X4: lognormal, mean 1000, cv 2.0 — X, has access to more assets in

event of default, when it captures
o more than 70% (2272/3272) of
= Counterparty holds probabilistic assets
th i

rej:r(\)/g? tc;(90 percentile — Lowers haircut to 24%

- o %o — 3% transferred from X, to X,

— 2272 for X,

= Conclusion

= Monoline

_ — Expected value of 970 for X,
— Xo no default haircut below promised actuarial value
— X, has 27% default haircut
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Insurer

Expected loss and premium allocation by class and layer

Expected Loss = E[X;(a)] = f E ’ X > x]S (x)dx = fo a;(x)S(x)dx
al(x)

Premium = p(X;(a)) = foa {i’* % X > x]}g(S(x))dx = foaﬁi(x)g(S(x))dx

ﬁizx)
= X;/X = variable share of Assumptions
available assets for policy i = Price with DRM g
= All quantities add-up = Equal priority in default
= No arbitrary choices Independence of X, not required
»= Not marginal cost, not Aumann- Relies on comonotonic additivity of DRM

Shapley value
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Insured

Insured loss distributions

» Two classes (lines) of insured

— X, thin-tailed class: high frequency,
low severity; lllinois personal auto

— X, thick-tailed class: catastrophe
exposed; Florida home

Regulator

Capital risk Enforces
measure minimum
a = a(X) | capital

Equity capital

Insurer

Intermediary |*

Q=a-P

Investor

Total Premium |

P=p(XNa)
Insureds & )
\ Losses, X Aa

= Risk is a characteristic of class and not the individual insured

» Homogeneous loss model: distribution scales, no shape change

— Results for a sub-pool of a class are proportional to the results for whole class,
i.e., model loss ratio, Myers Read and GBM models are homogenous

— Mildenhall (Risks 2017)
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Residual, (a — X)*
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Insured

Example: Thin- and Thick-tailed two-class model

x10~3 Density Log Density
1.75
— X0 10—3 | — X0
— X1 — X1
1.50 = Total = Total
10—5 -
1.25 A
10—7 -
1.00
10—9 -
0.75
10—11 .
0.50 4
10—13 -
0.25 1
10—15 -
0.00 A
I I 1 1 1 1 I I 1 1 1
0 50 100 150 200 250 0 50 100 150 200 250
Loss Loss

» Classes independent, convenience only

X, thin class, EL 75, CV 10%, gamma distribution, comparable to personal auto
X, thick class, EL 50, CV 53%, lognormal distribution, cat-exposed property
Portfolio CV 22%

= |nitially, expensive pricing, weak capital standard
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How will risks pool?

» Pools with the same class mix (e.g., monoline) can merge by homogeneity
» Pricing varies with mix: only one multiline pool (cheapest)

» There are only three possible market structures
— Full pooling: one insurer
— Two monoline insurers
— One multiline pool insurer and one monoline insurer

» Market defined by proportion t of risk class 1 in the pool, 0 £ t<1, and

t=0,1 two monoline pools

t=0.5 full pooling

0<t<0.5 class O fully pooled, class 1 split between pool and monoline
0.5<t<1 class 1 fully pooled, class 0 split between pool and monoline
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Total loss density, by portfolio mix 0 < t < 1

%10-6 Density by Mix Log Density by Mix
— t=0.0 — t=0.0
800 _ — t=1.0 10—4 - — t=1.0
600 - 10-6
400 N 10—8 |
200 - 10-10 -
0 -
T T T T 10-12 T T T
0 100 200 300 400 500 0.0 0.5 1.0 1.5 2.0
Actual Max=2047.96875 Actual Max=2047.96875 x103

= Pool outcome is X, = (1-1)X, + tX,
= Computations performed for 35 values of ¢

= Graphs show how shape of aggregate portfolio transitions from X, to X,
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Pooling

Premium rates by class

Rate by Class and Total

160
140 —
120 .
wllAl LT LT T ]
80 -
60 -
40 7 — X0 - L1
— X1 — P1
20 — total W X0 > 0.0161
-—— L0 e X1 <0.179
o+ frrrm i —nm

0.0 0.1 0.2 03 04 05 06 07 08 09 1.0
Proportion X1

Assumptions

» Wang hazard rho with 0.5 parameter

= Capital standard: 90% value at risk

* Premium rate = allocated premium / proportion of class,
is comparable with monoline premium
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t, the proportion of X, on x-axis

Lines show rate for each class

— Blue X, low, orange X, high risk
— Green: blended pool rate

Shaded bands at top show range

from monoline loss cost and premium
for each class

Expected unlimited loss, before
insurer default X, = 150, X, = 100;
slightly less with limited capital

Expensive pricing, weak capital
standard
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Limited liability causes rate to bow up above monoline rate

= Pooling risky debt with certain debt

. Rate by Class and Total benefits risky debt in default
140 ﬁg = Benefit compensated through
TIE SE - higher a priori premium
/
100 1 = Pool offers better coverage to
80 riskier insureds = costs more
%07 = Cost to provide insurance even
40 A — xo0 L1 when no benefit received, e.qg.,
20 e basis risk
=== [, X1 <0.179
0 4 P1

1 I 1 1 1 | 1 1 1 I 1
0.0 0.1 02 03 04 05 06 0.7 08 09 1.0
Proportion X1
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Partial pooling equilibrium solution

» Equilibrium solution, t =0.179
- Rate by Class and Total . XO and 22% of X1 are

L N P . H 0
L0 — pooled; remaining 78% of X;
. written monoline
100 {2 = Why?
80 - — t>0.179: X, rate greater than
60 - monoline...X; will not pool
40 - —— O — t<0.179: X, insureds in pool get
20 - S e M A P below monoline rate, with remainder
-—— LO e X1 <0.179 1
0] T monoline
00 01 b2 03 04 05 0.6 07 08 09 10 — Remainder will offer to pool with X,
Froportion X1 at slightly higher rate until equilibrium

. hedatt=0.179
Hence Florida home- paonem e
— X, pays monoline rate and X,

owners not fully pooled captures all diversification benefit
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Sensitivity to cost of capital

160

Rate by Class and Total

140 -

120 -

100 H

80 -

60

40 -

20 -

— total mm X0 > 0.0222
-—- L0 e X1 <0.131
— P1

[IIIIIII|IIII[IIIII|III|II

0.0 01

02 03 04 05 06 07 08 09 10
Proportion X1

Wang 0.25 parameter
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Rate by Class and Total

Pooling

175
e S e S

125 ~ \
—_—X0 - L1

004 — X1 —P1 | O OEZZC
- total e X0 > 0.0242

74 - LO e X1 <0.132
— P1

50

25 4

01 I M e o O A R A WA

T T T T T
02 03 04 05 06 07 08 09
Proportion X1

T T
0.0 0.1

Wang 1.5 parameter

T
1.0
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Stricter capital standard leads to full pooling outcome

Rate by Class and Total

160 -
—-..\-_ o

120 - /

100 +—F7—T—1 —_— X0 -1
— X1 -+ P1

80 - — total X0>0
----- LO X1 < 0.744

60 - — p

40 -

20 -

0| [P ————
P | IIIIIIIIIHIIl

1 | 1 1 1 1 1
0.0 0.1 02 03 0. 05 0.6 0.7 08 09 1.0
roportion X1

» Feasible region overlap includes
50/50 pool
= X, premium ~ 128 vs. 118 at p=0.9
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99.5% VaR capital standard (Solvency
Il level), base Wang 0.5 cost of capital

When £ = 0.5 is feasible for both
lines, it is the equilibrium solution

— If t #0.5, some insureds are
forced into monoline rate

— Monoline insureds offer to pool at
more advantageous rate

— t # 0.5 pool unravels

At t= 0.5, all insureds pay lower
multiline rate and no rational action
can cause pool to unravel

DemoTech in FL offers weaker
standard
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Conclusions

» Pooling solution determined by subtle interaction between
— Relative tail thickness of X, and X,
— Strength of capital standard
— Cost of capital

= Full pooling is more likely with
— Balanced tail thickness
— Stronger capital standard

» Impact of cost of capital indeterminate

= Diversification benefit of pooling is eroded by economic transfers caused by
limited liability, especially with weak capital standard
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Appendix
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Model Detalils

Audit statistics and pricing summary

X0 X1 total 99.5% VaR 90.0% VaR
Mean 75 50 125 Xo X1 Total Xo X Total
Item
cv 0.1 0.53294 0.221459
1. Allocated assets 110.602388 125428862 236.031250 | 84.666785 75270715 159.937500
Skew 0.2 175019 1.56504

2. Market value liability ~ 75.856673  63.192198 139.048871 | 73.600431 59.324711 132.925142

EmpMean 74.9844 499844  124.969
3. Expected incurred loss  74.945567  49.875561 124.821128 | 74.052542 48.430830 122.483372

EmpCV  0.100021 0.533107 0.221514

4. Margin 0911106  13.316637 14.227743 | -0.452111 10.893881  10.441769

EmpSkew 0.2 175019 1.56504 .
5. Loss ratio 0.987989 0.789268 0.897678 | 1.006143 0.816369 0.921446

EmpKurt 00599998 589843  5.06461 6. Allocated equity 34745715 62236664 96.982379 11.066354 15946004  27.012358

P90.0 8475 837188 159.938 7. Cost of allocated equity ~ 0.026222 0213968  0.146704  -0.040855 0683173  0.386555

P95.0 87.7188 100406  176.625 8. Premium to surplus ratio  2.183195  1.015353  1.433754 | 6.650829 3.720350  4.920901

P99.9999 116.188  475.188  550.812

= Example produced using aggregate = Pricing results using 99.5% VaR and 90.0% capital and
Python package Wang 0.5 distortion for t=0.50 portfolio
https://github.com/mynl/aggregate = Market value liability = premium
https://aggregate.readthedocs.io/ = Note: by class rates shown in graphs are twice (divide by

* pip install aggregate 0.5) the amounts shown here

= aggregate program for t=0.50
portfolio

port MIX_thin_thick
agg X0 1 claim sev gamma 75.0 cv 0.1 fixed
agg X1 1 claim sev lognorm 50.0 cv 0.5329 fixed
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Insurer

Expected loss and premium allocation by class and layer

Expected Loss = E[X;(a)] = f E ’ X > x]S (x)dx = fo a;(x)S(x)dx
al(x)

Premium = p(X;(a)) = foa {i’* % X > x]}g(S(x))dx = foaﬁi(x)g(S(x))dx

Bi(x)
= X;/X = variable share of Assumptions
available assets for policy i = Price with DRM g
= All quantities add-up = Equal priority in default
= No arbitrary choices Independence of X, not required

Not marginal cost, not Aumann-
Shapley value
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Loss density = a;(x)S(x)

alpha function: proportion of expected loss by layer

ai(x) = E[Xi/X | X > x]

1.0 /4

Sumto 1.0

0.8 -
Xo Thin, EL 150 / 250 = 60%

Y |
X, Thick
0.6 - 1 ’
\ dominates
in tail
0.4 -
0.2 -
— X0
0.04— x1

I 1 I I
0 50 100 150 200 250
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E[X: | X=x]: building block function for alpha and beta

Bivariate Density

250 -
200 -
\
—
:E 150 - \
£ Avg Thic
: " 2125
100 - =
50 -
0 1 1 ] 1 1
0 50 100 150 200 250
Line X0
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Ki(x) = E[X; | X =x]

— X0
| — x1

2501 __ ot

200 A

150 A

100 + /

0 50 100 150 200 250
Condition
on X =200
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Premium density = 8;(x)g(S(x))

beta function: proportion of premium by layer

= Bi(x), solid line, is a risk adjusted version of a;(x), dashed, putting more weight
on right tail

Bi(x) = Eo[Xi/X | X > x]

1.0 o == X0

When q;(x) increases B;(x) is
above a;(x), positive margins =
Thick orange (solid above dashed)

When o;(x) decreases [3i(x) is
below o,(x), negative margins for
some layers = Thin blue

0.0 +

1 I 1 I
0 50 100 150 200 250
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Margin = B;(x)g(S(x)) — a; (x)S(x)

Margins by asset layer, by class

Line = X0
1.0 s
R — g(s)
\‘ === aS X0
—_— 5) X0
0.8 - \ Bg(S)
0.6 F==""=  E—
0.44 Negative
margins
0.2 -
0.0 -
0 50 100 150 200 250

= Thin...ai(x) decreases...3,(x) below a;(x)
= Bi(x)g(S(x)) may be below a;(x)S(x)
= Possible negative margins for low layers

= Eventual cumulative margin positive
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Line = X1

1.0

0.8 -

-—- S5
— g(5)
\ -== a5X1
\ —— Bg(5) X1

I I I
150 200 250

1
100

Thick...q;(x) increases...3;(x) above a;(x)
Bi(x)g(S(x)) above a(x)S(x) since g(S)>S
Positive margins at all layers of capital
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Contact Information

Stephen Mildenhall, PhD, FCAS, ASA, CERA
Convex Risk LLC

New York, NY 100024

+1.312.961.8781 cell

steve@convexrisk.com

Graphic details: County size scaled to AAL estimates for hurricane, earthquake and severe weather using Gastner & Newman algorithm
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