

# Equilibrium Risk Pools in a Regulated Market with Costly Capital

Stephen J. Mildenhall October 27, 2020



# Why is Florida homeowners written in monoline companies?



#### Context and Literature

- Capital allocation and multiline pricing: perfect markets with frictional costs of holding capital and ex post equal priority default rule
  - Phillips, Cummins, Allen (JRI 1998)
  - Myers, Read (JRI 2001)
  - Sherris (JRI 2006)
  - Ibragimov, Jaffee, Walden (JRI 2010)
  - Cummins (RMIR 2000): frictions caused by tax, regulation and agency problems
- We assume the opposite: imperfect market but no frictional costs of capital
  - Risk cost of capital is not a friction
  - Rationale: catastrophe bond pricing



#### Context and Literature

- Charge for risk using a non-additive distortion (spectral) risk measure (DRM)
  - Wang (ASTIN 1996), Wang, Young, Panjer (IME 1997)
- Possible rationale: ambiguity averse investors charge for shape of risk
  - Klibanoff, Marinacci & Mukerji (Econometrica 2005)
- DRMs are non-additive, but they are still consistent with general equilibrium and no arbitrage prices
  - De Waegenaere, Kast, and Lapied (IME 2003), Chateauneuf, Kast, Lapied (Math Fin 1996)

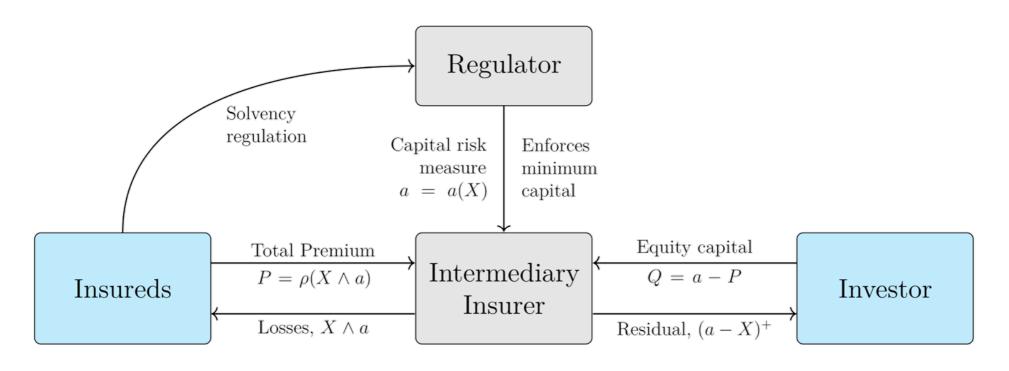


#### Context and Literature

- Diversification traps: Ibragimov, Walden (JB&F 2007) applies with very thick tails
- Ibragimov, Jaffee, Walden (Rev Fin 2018)
  - Perfect market with frictional cost of holding capital
  - One-sided protection rather than risk pooling
  - "Basic structure questions in a risk market with one-sided protection remain unanswered."
  - Show monoline solutions more likely when risks asymmetric or correlated
  - We show qualitatively similar results with entirely different assumption

Presentation partly based on joint work with John Major (arxiv 2020)

#### Four actors and market interactions

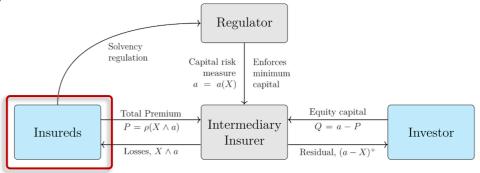


- Standard simplifying assumptions: no expenses, no investment income
- One-period model
- $X \wedge a = \min(X, a)$



# Insured buying behavior

- Face mandatory / quasi-mandatory insurance requirement
  - 60% of premium (Aon Benfield, 2015)



- Mandate is for third-party protection
  - Insureds do not care about insurer solvency provided policy satisfies mandatory requirement, e.g., guarantee funds or judgment proof

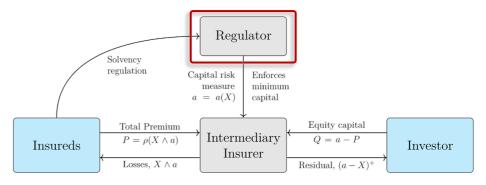
• Insureds are pure price buyers, do not see quality differences



#### Regulator

 Solvency regulation necessary to ensure mandatory insurance effective,

Cummins (JoF 1988)



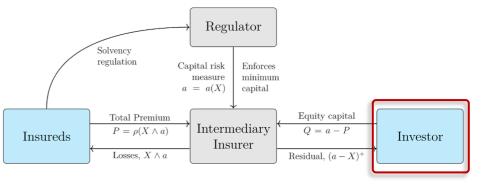
Incorporeal: regulator is a formula

- Regulatory capital standard risk functional a = a(X) = a(total risk)
  - Value at Risk (VaR) or tail value at risk
- No other regulation beyond capital standard



#### Investor: ultimate risk bearer

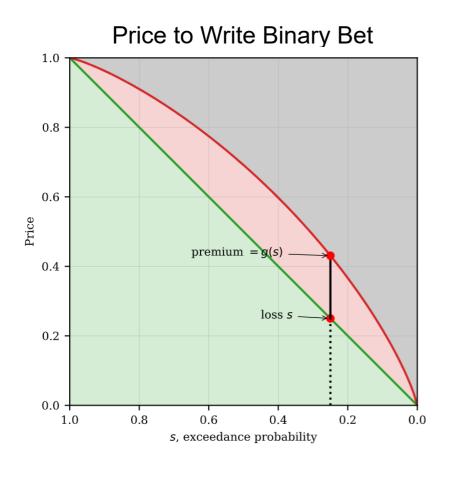
 Charge for risk, e.g., because ambiguity averse, but not necessarily risk averse



- Market price of capital explained by a distortion risk measure ρ
  - $\rho(X)$  gives market (ask) price of any loss payout distribution X
  - DRMs are coherent, given by weighted average of TVaRs
  - Law invariant: price of risk only depends on probability of loss



# If price of risk only depends on probability of loss...



 Distortion function g(s) = price to assume risk of paying 1 with probability s, a thin layer

$$g(0) = 0$$

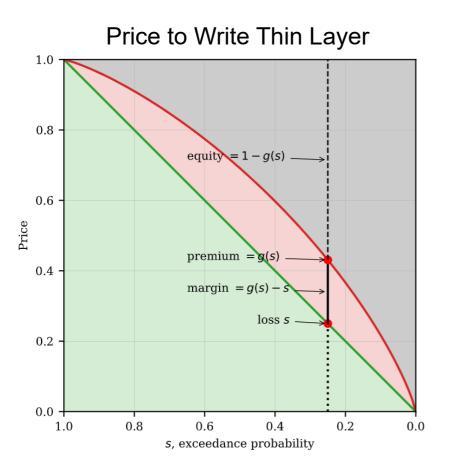
• 
$$g(1) = 1$$

- g increasing\*
- g concave
- Higher loss = lower probability layers inherently more ambiguous

<sup>\*</sup> Note: x-axis reversed! Wang Transform, 0.5



#### Thin layer insurance pricing statistics from distortion function



Loss Ratio = 
$$\frac{s}{g(s)}$$

Premium to surplus leverage = 
$$\frac{g(s)}{1-g(s)}$$

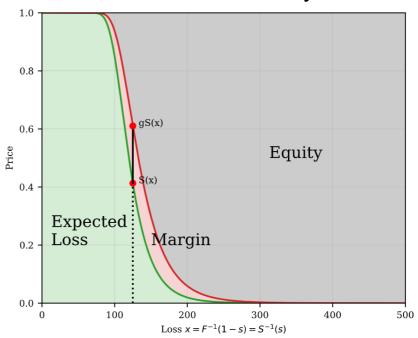
$$ROE = \frac{g(s) - s}{1 - g(s)}$$



#### Translate from probability of loss to dollars of loss

- Apply inverse distribution function, as per simulation
- Distortion thickens the tail
  - Increases expectation
  - Adds risk margin
- Acts on probabilities not on loss
  - Not a utility adjustment
  - Yarri dual utility
- No objective events
  - Events defined implicitly by probability







#### Limited liability expected loss & pricing implied by a distortion

Expected loss (LEV) 
$$E[X \land a] = \int_0^a S(x) dx = \int_0^a x f(x) dx + aS(a)$$

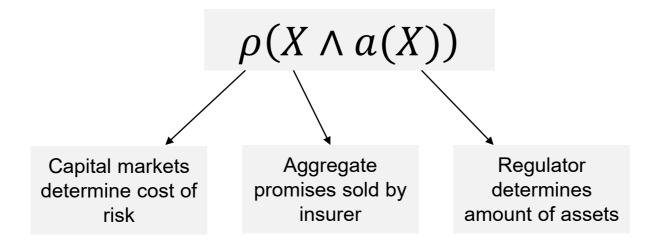
$$\int_0^{\text{distorted probability}} \text{transformed pdf state price density}$$

$$\int_0^{\text{distorted expected loss}} \int_0^a g(S(x)) dx = \int_0^a x g'(S(x)) f(x) dx + ag(S(a))$$

Average life expectancy: add up number of birthdays (survival) and divide by population



# Composite pricing functional

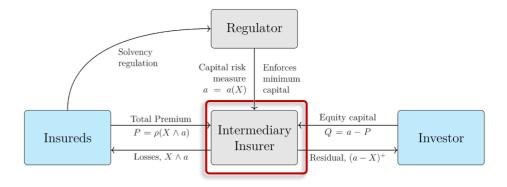


- If functionals  $\rho$  and a are monotonic, homogeneous, translation invariant, law invariant then so is composite
- Composite can fail to be sub-additive even when p and a are both sub-additive because diversification improves coverage quality for X<sub>0</sub> + X<sub>1</sub> and hence it costs more



#### Intermediary insurer

Limited liability entity with equal priority in default



Incorporeal: insurer is a formula

- Operates like a cat bond to minimize frictional costs of holding capital
  - No transaction costs, no taxes
  - No management: no principle-agent problems
  - Minimal regulation, no trapped capital
  - Pure exposure to insurance risk, like a sidecars
- Key functions: unambiguous pricing/results and enable limited liability



# Loss payments: who gets what in default?

Sold insurance promises

$$X = X_1 + \dots + X_n$$

Equal priority payment to policy i with assets a

$$X_{i}(a) := \begin{cases} X_{i} & X \leq a \\ a & (X_{i}/X) & X > a \end{cases}$$
$$= X_{i} \frac{X \wedge a}{X}$$
$$= \frac{X_{i}}{X} X \wedge a$$

■  $X_i(a)$  sum to limited losses,  $X \wedge a$ 

- $\frac{X \land a}{X}$  = fixed payment pro rata factor applied to loss from each policy
- $\frac{X_i}{X}$  = variable share of available assets for policy *i* applied to...
- X ∧ a amount of assets available to pay claims



# Archetype

- Two policy liabilities (debts)
  - X<sub>0</sub>: certain loss, 1000
  - X₁: lognormal, mean 1000, cv 2.0
- Counterparty holds probabilistic reserves, to 90<sup>th</sup> percentile
  - $1000 \text{ for } X_0$
  - 2272 for  $X_1$

#### Monoline

- X<sub>0</sub> no default haircut
- X<sub>1</sub> has 27% default haircut

#### Pooled

- Assets 3272
- X<sub>1</sub> has access to more assets in event of default, when it captures more than 70% (2272/3272) of assets
- Lowers haircut to 24%
- 3% transferred from X<sub>0</sub> to X<sub>1</sub>

#### Conclusion

Expected value of 970 for X<sub>0</sub>,
 below promised actuarial value



# Expected loss and premium allocation by class and layer

Expected Loss = 
$$E[X_i(a)] = \int_0^a \underbrace{E\left[\frac{X_i}{X}|X>x\right]}_{\alpha_i(x)} S(x) dx = \int_0^a \alpha_i(x) S(x) dx$$

Premium = 
$$\rho(X_i(a)) = \int_0^a E^* \left[ \frac{X_i}{X} | X > x \right] g(S(x)) dx = \int_0^a \beta_i(x) g(S(x)) dx$$

- $X_i/X$  = variable share of available assets for policy i
- All quantities add-up
- No arbitrary choices
- Not marginal cost, not Aumann-Shapley value

#### **Assumptions**

- Price with DRM g
- Equal priority in default

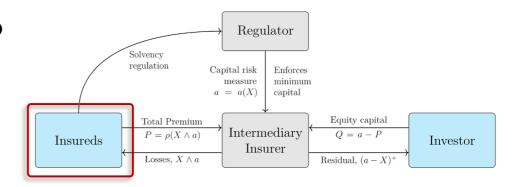
Independence of X<sub>i</sub> not required

Relies on comonotonic additivity of DRM



#### Insured loss distributions

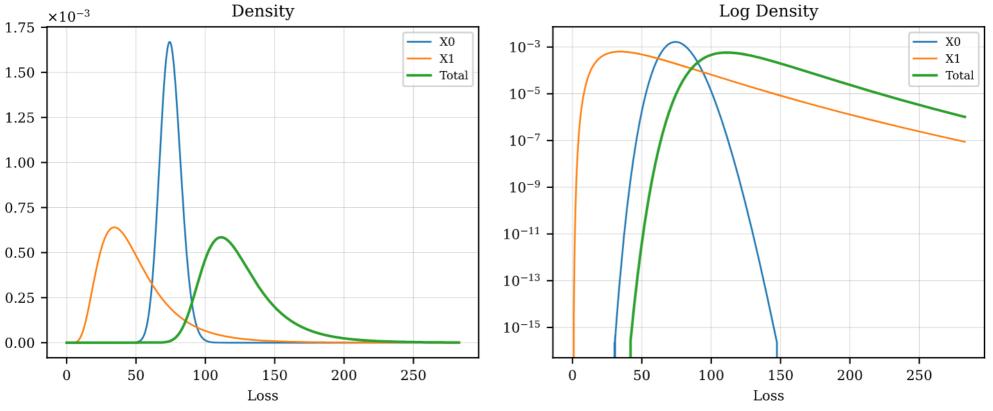
- Two classes (lines) of insured
  - X<sub>0</sub> thin-tailed class: high frequency, low severity; Illinois personal auto
  - X<sub>1</sub> thick-tailed class: catastrophe exposed; Florida home



- Risk is a characteristic of class and not the individual insured
- Homogeneous loss model: distribution scales, no shape change
  - Results for a sub-pool of a class are proportional to the results for whole class,
     i.e., model loss ratio, Myers Read and GBM models are homogenous
  - Mildenhall (Risks 2017)



# Example: Thin- and Thick-tailed two-class model



- Classes independent, convenience only
- X<sub>0</sub> thin class, EL 75, CV 10%, gamma distribution, comparable to personal auto
- X<sub>1</sub> thick class, EL 50, CV 53%, lognormal distribution, cat-exposed property
- Portfolio CV 22%
- Initially, expensive pricing, weak capital standard



#### How will risks pool?

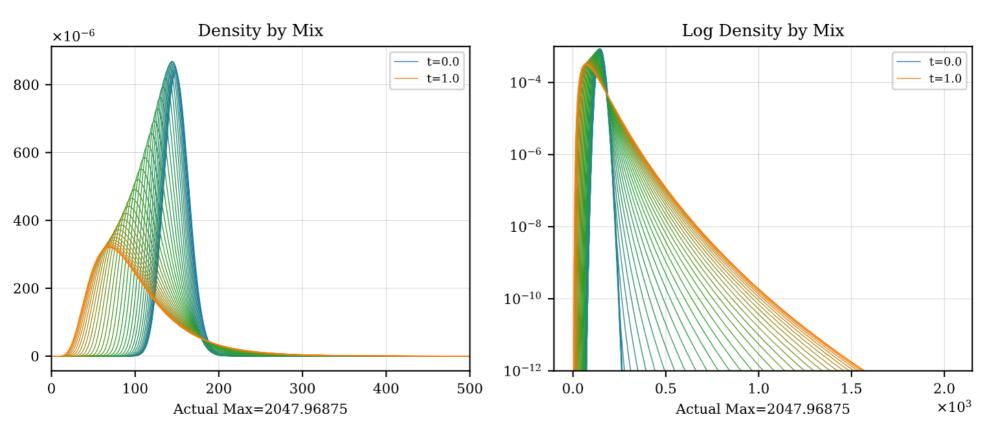
- Pools with the same class mix (e.g., monoline) can merge by homogeneity
- Pricing varies with mix: only one multiline pool (cheapest)
- There are only three possible market structures
  - Full pooling: one insurer
  - Two monoline insurers
  - One multiline pool insurer and one monoline insurer

#### ■ Market defined by proportion t of risk class 1 in the pool, $0 \le t \le 1$ , and

| t = 0, 1           | two monoline pools                                            |
|--------------------|---------------------------------------------------------------|
| <i>t</i> = 0.5     | full pooling                                                  |
| 0 < <i>t</i> < 0.5 | class 0 fully pooled, class 1 split between pool and monoline |
| 0.5 < <i>t</i> < 1 | class 1 fully pooled, class 0 split between pool and monoline |



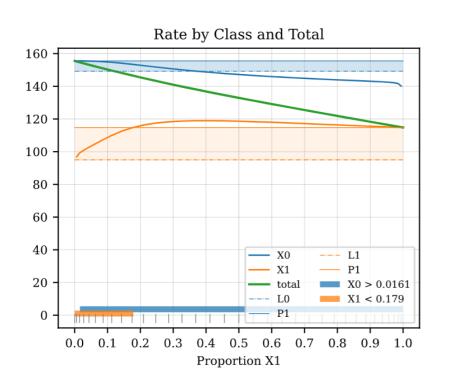
# Total loss density, by portfolio mix $0 \le t \le 1$



- Pool outcome is  $X_t = (1 t)X_0 + tX_1$
- Computations performed for 35 values of t
- Graphs show how shape of aggregate portfolio transitions from X<sub>0</sub> to X<sub>1</sub>



#### Premium rates by class



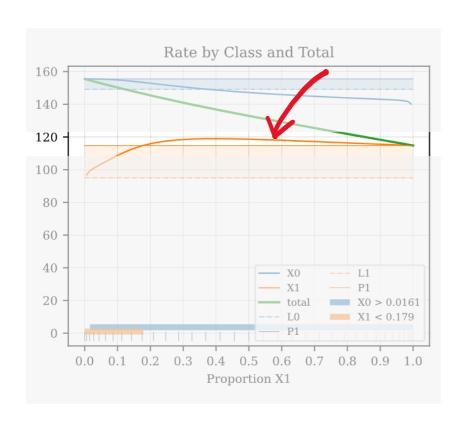
#### **Assumptions**

- Wang hazard rho with 0.5 parameter
- Capital standard: 90% value at risk
- Premium rate = allocated premium / proportion of class, is comparable with monoline premium

- t, the proportion of X₁, on x-axis
- Lines show rate for each class
  - Blue X₀ low, orange X₁ high risk
  - Green: blended pool rate
- Shaded bands at top show range from monoline loss cost and premium for each class
- Expected unlimited loss, before insurer default X<sub>0</sub> = 150, X<sub>1</sub> = 100; slightly less with limited capital
- Expensive pricing, weak capital standard



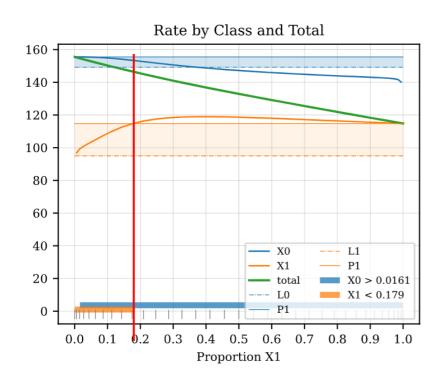
#### Limited liability causes rate to bow up above monoline rate



- Pooling risky debt with certain debt benefits risky debt in default
- Benefit compensated through higher a priori premium
- Pool offers better coverage to riskier insureds = costs more
- Cost to provide insurance even when no benefit received, e.g., basis risk



#### Partial pooling equilibrium solution



Hence Florida homeowners not fully pooled

#### Equilibrium solution, t = 0.179

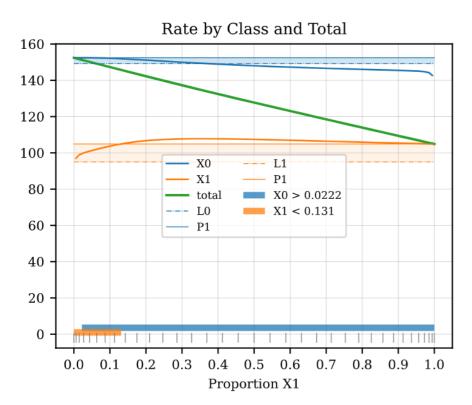
X<sub>0</sub> and 22% of X<sub>1</sub> are pooled; remaining 78% of X<sub>1</sub> written monoline

#### Why?

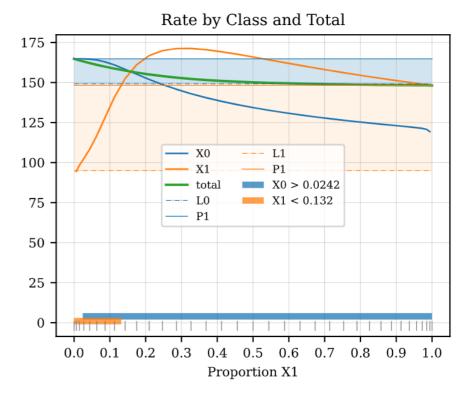
- -t > 0.179: X<sub>1</sub> rate greater than monoline...X<sub>1</sub> will not pool
- t < 0.179: X<sub>1</sub> insureds in pool get below monoline rate, with remainder monoline
- Remainder will offer to pool with X<sub>0</sub>
   at slightly higher rate until equilibrium reached at t = 0.179
- X<sub>1</sub> pays monoline rate and X<sub>0</sub>
   captures all diversification benefit



#### Sensitivity to cost of capital



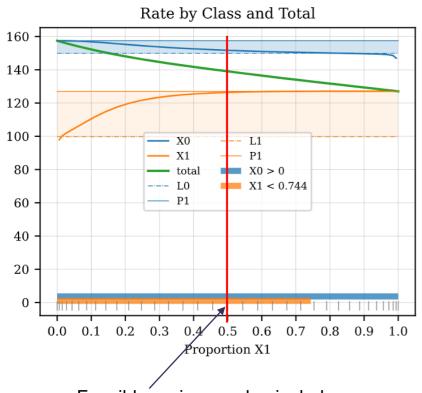
Wang 0.25 parameter



Wang 1.5 parameter



#### Stricter capital standard leads to full pooling outcome



- Feasible region overlap includes 50/50 pool
- X<sub>1</sub> premium ~ 128 vs. 118 at p=0.9

- 99.5% VaR capital standard (Solvency II level), base Wang 0.5 cost of capital
- When *t* = 0.5 is feasible for both lines, it is the equilibrium solution
  - If  $t \neq 0.5$ , some insureds are forced into monoline rate
  - Monoline insureds offer to pool at more advantageous rate
  - -t ≠ 0.5 pool unravels
- At t = 0.5, all insureds pay lower multiline rate and no rational action can cause pool to unravel
- DemoTech in FL offers weaker standard



#### **Conclusions**

- Pooling solution determined by subtle interaction between
  - Relative tail thickness of X<sub>0</sub> and X<sub>1</sub>
  - Strength of capital standard
  - Cost of capital
- Full pooling is more likely with
  - Balanced tail thickness
  - Stronger capital standard
- Impact of cost of capital indeterminate
- Diversification benefit of pooling is eroded by economic transfers caused by limited liability, especially with weak capital standard



# Appendix



#### Audit statistics and pricing summary

|          | X0        | X1       | total    |  |
|----------|-----------|----------|----------|--|
| Mean     | 75        | 50       | 125      |  |
| cv       | 0.1       | 0.53294  | 0.221459 |  |
| Skew     | 0.2       | 1.75019  | 1.56504  |  |
| EmpMean  | 74.9844   | 49.9844  | 124.969  |  |
| EmpCV    | 0.100021  | 0.533107 | 0.221514 |  |
| EmpSkew  | 0.2       | 1.75019  | 1.56504  |  |
| EmpKurt  | 0.0599998 | 5.89843  | 5.06461  |  |
| P90.0    | 84.75     | 83.7188  | 159.938  |  |
| P95.0    | 87.7188   | 100.406  | 176.625  |  |
| P99.9999 | 116.188   | 475.188  | 550.812  |  |

- Example produced using aggregate
   Python package
   <a href="https://github.com/mynl/aggregate-nttps://aggregate.readthedocs.io/">https://aggregate.readthedocs.io/</a>
- pip install aggregate
- aggregate program for t=0.50 portfolio

```
port MIX_thin_thick
    agg X0 1 claim sev gamma 75.0 cv 0.1 fixed
    agg X1 1 claim sev lognorm 50.0 cv 0.5329 fixed
```

|                             | 99.5% VaR  |            |            | 90.0% VaR |           |            |
|-----------------------------|------------|------------|------------|-----------|-----------|------------|
|                             | $X_0$      | $X_1$      | Total      | $X_0$     | $X_1$     | Total      |
| Item                        |            |            |            |           |           |            |
| 1. Allocated assets         | 110.602388 | 125.428862 | 236.031250 | 84.666785 | 75.270715 | 159.937500 |
| 2. Market value liability   | 75.856673  | 63.192198  | 139.048871 | 73.600431 | 59.324711 | 132.925142 |
| 3. Expected incurred loss   | 74.945567  | 49.875561  | 124.821128 | 74.052542 | 48.430830 | 122.483372 |
| 4. Margin                   | 0.911106   | 13.316637  | 14.227743  | -0.452111 | 10.893881 | 10.441769  |
| 5. Loss ratio               | 0.987989   | 0.789268   | 0.897678   | 1.006143  | 0.816369  | 0.921446   |
| 6. Allocated equity         | 34.745715  | 62.236664  | 96.982379  | 11.066354 | 15.946004 | 27.012358  |
| 7. Cost of allocated equity | 0.026222   | 0.213968   | 0.146704   | -0.040855 | 0.683173  | 0.386555   |
| 8. Premium to surplus ratio | 2.183195   | 1.015353   | 1.433754   | 6.650829  | 3.720350  | 4.920901   |

- Pricing results using 99.5% VaR and 90.0% capital and Wang 0.5 distortion for t=0.50 portfolio
- Market value liability = premium
- Note: by class rates shown in graphs are twice (divide by 0.5) the amounts shown here



# Expected loss and premium allocation by class and layer

Expected Loss = 
$$E[X_i(a)] = \int_0^a \underbrace{E\left[\frac{X_i}{X}|X>x\right]}_{\alpha_i(x)} S(x) dx = \int_0^a \alpha_i(x) S(x) dx$$

Premium = 
$$\rho(X_i(a)) = \int_0^a E^* \left[ \frac{X_i}{X} | X > x \right] g(S(x)) dx = \int_0^a \beta_i(x) g(S(x)) dx$$

- $X_i/X$  = variable share of available assets for policy i
- All quantities add-up
- No arbitrary choices
- Not marginal cost, not Aumann-Shapley value

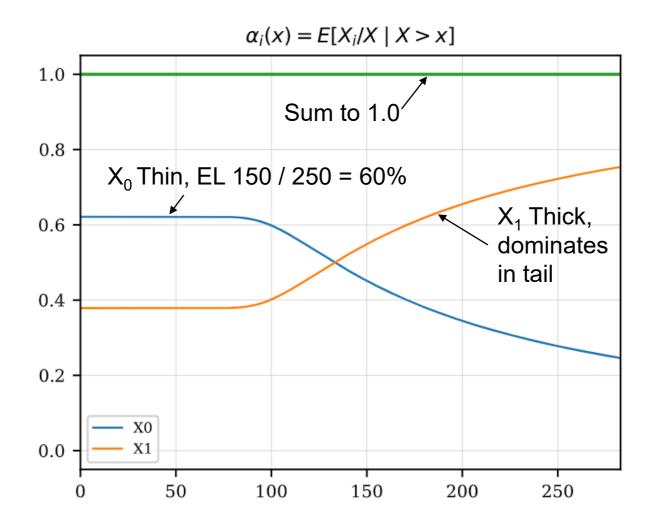
**Assumptions** 

- Price with DRM g
- Equal priority in default

Independence of X<sub>i</sub> not required



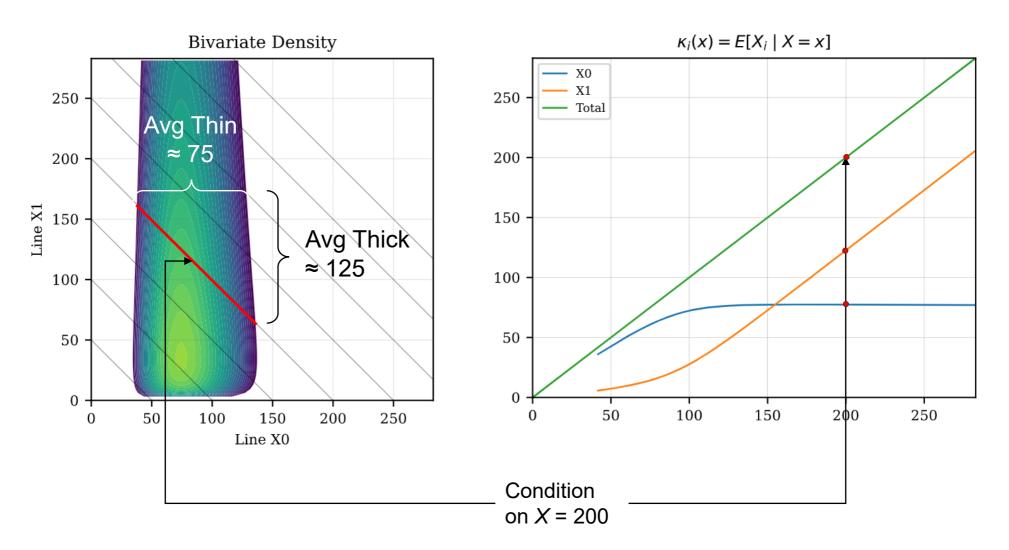
#### alpha function: proportion of expected loss by layer





$$\alpha_i(x)S(x) = \int_x^\infty \frac{E[X_i \mid X = t]}{t} f_X(t)dt$$

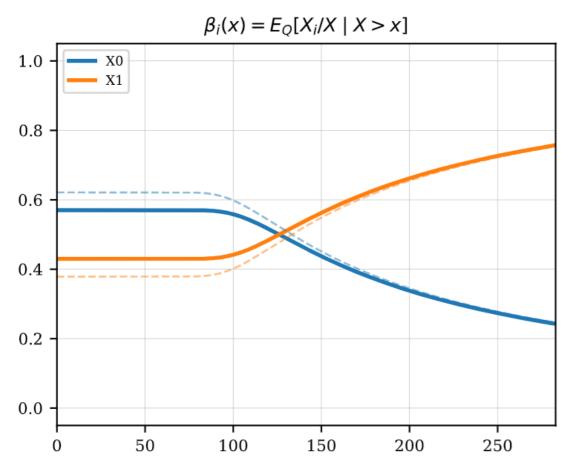
# $E[X_i \mid X=x]$ : building block function for alpha and beta





#### beta function: proportion of premium by layer

•  $\beta_i(x)$ , solid line, is a risk adjusted version of  $\alpha_i(x)$ , dashed, putting more weight on right tail



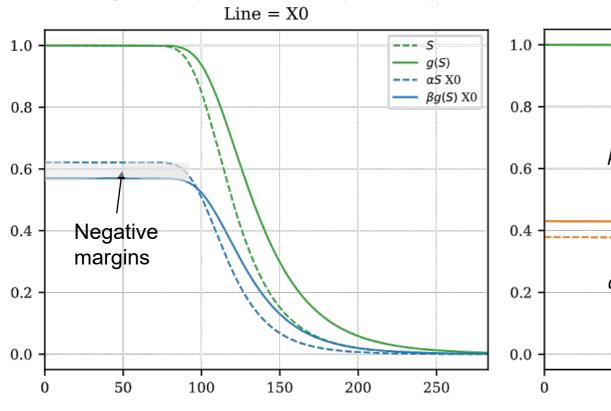
When  $\alpha_i(x)$  increases  $\beta_i(x)$  is above  $\alpha_i(x)$ , positive margins = Thick orange (solid above dashed)

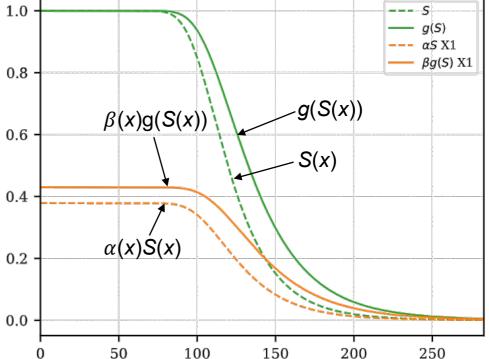
When  $\alpha_i(x)$  decreases  $\beta_i(x)$  is below  $\alpha_i(x)$ , negative margins for some layers = **Thin blue** 

Line = X1



#### Margins by asset layer, by class





- Thin... $\alpha_i(x)$  **dec**reases... $\beta_i(x)$  **below**  $\alpha_i(x)$
- $\beta_i(x)g(S(x))$  may be **below**  $\alpha_i(x)S(x)$
- Possible negative margins for low layers
- Eventual cumulative margin positive

- Thick... $\alpha_i(x)$  increases... $\beta_i(x)$  above  $\alpha_i(x)$
- $\beta_i(x)g(S(x))$  above  $\alpha_i(x)S(x)$  since g(S)>S
- Positive margins at all layers of capital



#### **Contact Information**



Stephen Mildenhall, PhD, FCAS, ASA, CERA

Convex Risk LLC New York, NY 100024 +1.312.961.8781 cell

steve@convexrisk.com

