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Abstract

This paper investigates equilibrium risk pools in a market with risk-based solvency
regulation and costly capital. It considers a market with two classes of risk, each hav-
ing different aggregate volatility characteristics, such as personal auto and catastrophe
exposed property. It identifies three possible equilibrium solutions: a single multiline
pool, a multiline pool and a monoline pool, and two monoline pools. It determines con-
ditions under which each of the three solutions occurs. The requirements are sensitive
to the relative tail risk of the two classes and the capital standard. The model shows
that the more volatile risk class bears a higher proportion of the capital cost. The
results help explain various features seen in insurance markets, including the structure
of the Florida homeowners market and the US medical malpractice market. It can be
applied more broadly to any regulated risk market.

JEL Codes: G22, G10

1 Introduction

Risk is better shared. The famous mutuality principle states that diversifiable risk should be
removed by pooling. Remaining non-diversifiable risk is borne by each agent in proportion
to their share of aggregate risk tolerance, Eeckhoudt, Gollier, and Schlesinger (2011). These
results produce a world where risk-averse agents optimally pool all their risk.

In the real world, there is generally no way to pool risks in the manner envisioned by theory,
Arrow (1996). Practical insurance involves limited liability insurance pools whose contractual
(promised) payouts are state-independent. The pools must attract capital in a competitive
market where it has a non-zero opportunity cost. As a result, risk pooling is expensive and
has a cost above actuarial estimates.

Costly capital and the benefits of diversification lead us to expect that a few large multiline
companies should dominate the insurance market. Indeed, large multiline carriers do write
a substantial proportion of business. But looking more closely, we see many deviations
from the pooling-is-best hypothesis. There is incomplete pooling between personal lines
and commercial lines. Commercial, which is a more volatile business, having higher limits



and a more severe pricing cycle, tends to be written by smaller companies. And over 2,600
property-casualty insurers operate in the US. Monoline companies write a disproportionate
share of volatile business, such as Florida homeowners business, California earthquake, and
medical malpractice'. What explains this structure?

Cost-based factors, economies or dis-economies of scale, and management span and control
provide one explanation, Cummins et al. (2010). These are undoubtedly important. But,
since this is a question about risk, it should have a risk-based answer and that is what this
paper seeks to provide.

In recent work, Ibragimov, Jaffee, and Walden (2018) state that basic structure questions
in a risk market with one-sided protection remain unanswered. Working in a perfect market
with frictional costs of capital, they show that monoline solutions are more likely when risks
are asymmetric or correlated and that multiline pooling solutions are more likely for well-
behaved and independent risks. This paper comes to qualitatively similar results but uses a
entirely different market model.

We show that when two risk classes buy insurance from capital-regulated, limited liability
insurance pools facing costly capital, there are three possible market outcomes. There can
be one insurer pooling all risks, two monoline insurers, or the insureds are split between
one pool insurer and one monoline. One pool is the usual solution. Two monoline pools
occur when the regulator capital function is super-additive, generally when insurance risk
is very thick-tailed, Ibragimov and Walden (2007). In the split case, the higher volatility
class splits between the pool and the monoline, and the lower risk class appropriates all of
the diversification benefits. The higher risk class pays its monoline rate. This result is likely
counter to insurance affordability and availability goals for the high risk class. These effects
are more pronounced for weaker capital regulation and cheaper insurance.

The market structure solutions emerge from the interaction between the investor’s view of
risk and the regulator’s. Even when the investor and the regulator risk measures are both
coherent, their combination, which determines market prices, can fail to be subadditive.
This failure results in monoline solutions. Our results extend Ibragimov, Jaffee, and Walden
(2010), which had the critical insight that there is essentially only one marginal cost capital
allocation consistent with fair pricing. Their marginal cost view becomes our marginal
regulatory capital, and we replace their perfect market pricing model with an imperfect
model.

A primary goal for this work is to answer market structure questions in a framework consis-
tent with the real insurance market. Our title flags the two realities with which we are most
concerned: regulation and costly capital. Regulation enters because we assume a mandatory
insurance requirement. We assume capital is costly because investors are ambiguity averse.
As a result, pricing is governed by a non-additive pricing rule. The rationale is laid out in
section 2.

An extensive literature considers optimal risk-sharing between two risk classes. In contrast,
we assume that insurance transfers risk to a separate investor group, independent of the

Monoline companies write US mortgage guaranty for different legal reasons.



risk owners, what Ibragimov, Jaffee, and Walden (2018) call one-sided protection. We ask
whether it is most efficient for all insureds to combine into one multiline pool when purchasing
one-sided protection. Broadly, the global insurance market provides one-sided protection
rather than inter-insured pooling. For example, Canadian pension funds are significant
investors in US catastrophe insurance-linked securities: investors form a distinct group from
risk owners.

We can consider risk pooling as a reinsurance question. In our model, insurance pools are
transparent pass-through entities, but they have a legitimate interest in the shape of risk
because it drives their cost of capital. Therefore, there is a potential role for reinsurance.
We find that reinsurance enables a pooled premium rate rather than pooling risk. If it were
optimal to pool the risks, then they would be pooled directly in the first place. Differential
premium rates can be an impediment to this pooling that reinsurance can help overcome.
Reinsurance does not lead to a new equilibrium solution because the possibility of direct
contracting makes reinsurance pools unstable and, absent some enforcement mechanism,
they unravel. Surprisingly pools with reinsurance have less risk pooling than those without
it.

This paper offers the following contributions.

We contribute to the problem of the equilibrium industry structure. We show that a market
with two classes of risk will consist of one multiline carrier, two monolines, or a multiline and
a monoline. This last split result generally obtains when one class is more risky than the
other. In that case, the less risky class appropriates all the diversification benefits. These
results depend on the capital standard and highlight that regulation can have unintended
consequences.

We provide new insight into how limited liability and diversification interact. Limited liability
produces subsidies between lines, which offset the benefits of diversification. These effects
are more pronounced when the capital standard is weaker. In a dynamic model, they can
introduce subsidies that disadvantage low-risk insureds. Regulation should consider these
impacts when calibrating a capital standard.

Our methods can help insurers answer strategic questions related to geographic or class ex-
pansion. Regulation introduces a rigidity in rates that can discourage diversification and
lock-in subsidies between classes, and our analysis makes it clear where and how such rigidi-
ties will manifest themselves.

Finally, we show that it is practical to work in a realistic, imperfect market and obtain
explicit premium, loss, and capital allocation results.

The rest of the paper is structured as follows. Section 2 describes the market participants
and their interactions. Section 3 recalls results that determine the fair market value of
insurance cash flows for each class in a multiple-class insurance pool. Section 4 derives the
market outcomes that can occur. Section 5 gives some examples, and Section 6 concludes
and suggests further research.



1.1 Notation and Conventions

The terminology describing risk measures is standard, and follows Follmer and Schied (2011).
We work on a standard probability space, Svindland (2009). The remaining notation is
consistent with Major and Mildenhall (2020).

Total insured loss, or total risk, is described by a random variable X. X reflects policy limits
but is not limited by insurer assets. X = ZZ X, describes the split of losses by class. F', S,
f, and q are the distribution, survival, density, and quantile function of X. Subscripts are
used to clarify the random variable. X A a denotes min(X,a) and X* = max(X,0). 1, is
the indicator function on a set A.

We use the actuarial sign convention: losses are positive and large positive values are bad.

2 Market Participants and Market Assumption

We work in a market with four participants: insureds, a regulator, insurance pools and
investors, as shown in Figure 1.

We assume a one period model, with no expenses, no taxes, and a zero risk-free rate of
interest. These are standard simplifying assumptions, e.g. Ibragimov, Jaffee, and Walden
(2010).

At time t = 0 insureds form into limited liability insurance pools. The policies issued to
pool participants aggregate to a total exposure X = EZ X,. The regulator capital measure
determines the amount of assets the pool needs to hold, a = a(X). The pool raises a from
a combination of premium and by selling its ¢ = 1 residual value to investors to raise equity.
At t = 1 claims become known and are paid. If losses X < a all insureds are paid in full
and the residual value a — X is distributed to investors. If X > a the pool defaults and pays
insureds on an equal priority, pro rata basis. The investors receive nothing. In both cases
the pool is wound-up at ¢ = 1. There are no transactions between 0 and 1 and hence no
distinction between capital and assets.
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Figure 1: The four market actors and their interactions.

The investor prices with a functional p. The insurer purchases a quota share, with limit a,



from the investors for a premium
p4(X) 1= p(X A a(X)). 1)

Thus the market pricing functional combines investor and regulator risk functionals in an
intricate and subtle way. All the effects we discuss are related to the properties of p®.
It is easy to see that if both a and p are positive homogeneous, monotone, translation
invariant, law invariant, or comonotonic additive then p® will have the same property too.
But, critically, p® can fail to be subadditive even when both a and p are subadditive. It is
this fact that makes the pooling problem interesting and difficult.

We now specify the assumptions and behavior of each actor, starting with buying motivation.

2.1 Compulsory Insurance
Our model assumes that insurance is compulsory and is bought for the protection of others.

Aon Benfield (2015) estimate that around 60 percent of global property-casualty premium is
compulsory or quasi-compulsory. Broadly interpreted, compulsory insurance includes auto
liability, much property insurance providing collateral protection, contractual general liability
and surety, and workers compensation for employers, amongst other lines. Flood insurance,
but curiously not earthquake, is required to obtain a mortgage in the US on an at-risk
property. We use compulsory as a catch-phrase to include any legal, contractual, or doing-
business requirements.

Since insurance is bought for the protection of others, the insured has no interest in its quality,
and so solvency regulation is necessary to ensure the insurance requirement functions effec-
tively, Cummins (1988). As predicted by theory, compulsory insurance laws usually require
insurance be provided by a licensed insurer, operating under risk-based capital regulation.
US conforming mortgages require property insurance from an insurer with an adequate rating
from a nationally recognized statistical rating organization, for example.

Insureds have no interest in the quality of their insurance either because they are judgment
proof or because residual claims are covered by a guaranty fund or both. As a result, insureds
are pure price buyers, concerned only that the insurance satisfies their compulsory insurance
requirement.

2.2 Insureds

There are two classes of insureds. Throughout, class 0 is a lower risk class and class 1 higher
risk. Risk is relative. Insureds within a class can be considered identical, with the same
insurance contract, the particulars of which areirrelevant. As a result, adverse selection is
not a problem.

We are only concerned with class risk and not with individual insured characteristics within
the class. Correlations and dependencies between insureds determine class risk. It cannot be
discerned insured by insured. Florida homeowners insurance is a high volatility class. Low
limit, high frequency US-style personal automobile is a low volatility class. An individual



Florida homeowners policy may have the same range of outcomes as a home in France or
Germany or Illinois. Still, the risk of a portfolio of Florida homes will be higher because of
the possibility of hurricane events.

Aggregate losses are homogeneous within each class, meaning that losses from a proportion
x,; of class 4 has distribution x,;X; for fixed distributions X, ¢ = 0,1. A homogeneous loss
model is a common approximation borrowed from finance, where x; is a position size and
X is a security price. It is used by Myers and Read Jr. (2001). X, can be considered as the
loss ratio for the class. Boonen, Tsanakas, and Wiithrich (2017) compares the homogeneous
assumption to a more realistic compound Poisson model, and Mildenhall (2017) shows that
a homogeneous assumption is not unrealistic for larger portfolios.

All market participants agree best-estimate subjective probabilities that underlie X,;. They
are recognized as ambiguous and uncertain. Commercial catastrophe models provide such
probabilities for the property catastrophe market.

Individual risk aversion is not assumed in the model and is not necessary for the results.

2.3 Regulation

The solvency of insurance pools must regulated for compulsory insurance to be effective and
provide the desired third-party protection.

Regulation takes the form of a regulatory capital risk measure a. We assume that a is law
invariant, positive homogeneous, monotone, and translation invariant. In most cases a is
given by value at risk (VaR) or tail value at risk (TVaR). US NAIC RBC and Solvency II
are VaR-based; the Swiss Solvency Test is TVaR-based.

The regulatory risk measure is not assumed to be subadditive, and therefore may not be
coherent.

There is no other regulation in the market. Rate regulation is not needed because we assume
actors are well-informed. And there is no restriction on insurance pools, other than that they
meet the capital requirement. A pool can consist of a single risk, or one pool could contain
all risks, or any subset in-between. This flexibility means insureds have option of being
written in a pool of one, which sets an upper bound on the premium they will pay.

2.4 Insurer Intermediaries

Insurer intermediaries are transparent pass-through entities that provide compulsory insur-
ance meeting the regulator’s capital standard. They manage a pool of insureds and arrange
for the risk to be transferred to investors. They are like a smart-contract and operate
costlessly. They have no employees or management, and so there are no principle-agent
problems.

A pool refers to a group of insureds. There are two types of pool. A monoline pool contains
insureds from one class. A multiline pool contains insureds from more than one class.



An insurance pool is a limited liability insurance company. In theory, pools could contract
directly with insurers and obtain unlimited cover. This will not occur in our model because
insureds do not consider insurance quality, only price.

Although insurers are incorporeal, they have a real economic impact because they enable
limited liability, which changes the cash flows paid to insureds. Limited liability is vital to
ambiguity averse investors: it truncates the tail, and it lowers the ambiguity of the losses
they assume.

We could argue that since investors ultimately bear all the risk they should be indifferent to
how it is packaged into pools. This is not correct. The pools alter the actual payments made
by investors because they impact the incidence of default. A multiline insurer structure will
default in different states than two monoline insurers.

Limited liability requires a legal framework to function; this is why the market uses insurer
legal entities rather than third-party pool managers who only act as brokers between insureds
and investors but assume no risk. The limited liability contract binds the participants
to equal priority in default. Marshall (2018) provides an illuminating discussion of the
importance of a legal entity to implement limited liability in the context of the California
Earthquake Authority.

Since it is so important, we now describe in detail how equal priority in limited liability
functions. It shares assets in proportion to unlimited claims. Individual insurance contracts
promise to pay X, to class i. In the aggregate, promised payments are split into realized
payments and insurer default as

X=XANa+(X—a),
where a equals insurer assets. Multiplying both sides by X,/X shows

XANa (X —a)t
X.
X A X
= (payments to class i) + (default to class 7).

The payments to class ¢ under equal priority are defined as

X Aa XZ XSCL
) X { i X>a )

“x

Under equal priority class ¢ is paid in full when total losses are less than or equal to assets and
payments are pro-rated down by X,;/X in default states. These payments are contractual
and are legally specified. Note that } . X;(a) = X Aa.

Contractually specified payments to ¢ are a function of X, alone. These are the amounts
promised to ¢ by their insurance contract. X,(a) is the amount actually paid to i; it is a
function of losses for all classes, X, ..., X,, as well as the total assets a held by the insurer.
This distinction between promised and delivered payments is critical. It is responsible for
almost all the complexity of insurance pricing. In economics, the benefit of a good to the



buyer is usually independent of who else purchases it. With insurance risk pools that is not
the case: the value to one insured is almost always changed in some way if the pool takes on
other risks. To completely specify the payments to i it is necessary to know about possible
payments on all other contracts. These facts have profound implications for pooling.

The insurance market is competitive. Since actors agree on probabilities, insureds only pay
the fair price for insurance, and neither pools nor insurers make a profit.

2.5 Investor Risk Bearers

Investors bear insurance risk. Risk is transferred from the insureds to a distinct group of
investors providing one-sided protection. It is not being pooled within insureds.

The theory of multiline pricing typically assumes a perfect complete market, but with a
frictional cost of holding capital in an insurance company, Phillips, Cummins, and Allen
(1998), Myers and Read Jr. (2001), Sherris (2006), Ibragimov, Jaffee, and Walden (2010),
and Cummins (2000). These assumptions imply that diversifiable insurance risk is not priced.
The catastrophe bond market is inconsistent with these implications. A catastrophe bond is
deliberately structured to minimize frictional costs: it has no management, it is domiciled
in a tax-free jurisdiction, and is very lightly regulated. And yet catastrophe bonds are
typically priced at two to ten times best-estimate losses (see www.artemis.bm for examples
of catastrophe bond pricing). Investors charge for bearing risk beyond the cost of holding
capital in insurance entities.

Which risks do investors price? All theories price systematic, non-diversifiable risk. And
while hurricane or earthquake are conceivably systematic, the idea becomes less credible for
minor perils covered by catastrophe bonds at substantial margins. On the other hand, it is
hard to argue that investors price pure roulette lottery risk since the mechanisms to pool and
manage it are so evident. But this is a false dichotomy. Insurance is not a roulette lottery.
In the phrase of Anscombe and Aumann (1963) it is an uncertain horse lottery, governed by
unknown and ambiguous subjective probabilities rather than unique objective ones. There
is extensive evidence that investors are ambiguity averse, Ellsberg (1961). Underwriters
consider a one in one hundred year event risky primarily because they do not have hundreds
of years of experience. Its objective probability is uncertain. Data is more abundant for
more frequent events, and uncertainty is lower. Zhang (2002) and Klibanoff, Marinacci, and
Mukerji (2005) describe ambiguity relevant to insurance pricing. The latter paper has been
applied in an insurance context by Robert and Therond (2014), Dietz and Walker (2017)
and Jiang, Escobar-Anel, and Ren (2020). Note that it is hard to distinguish risk aversion
from ambiguity aversion because risky thick-tailed distributions are also more ambiguous.

We assume that the insurance market is imperfect. Investors are ambiguity averse but not
necessarily risk-averse. Market prices incorporate investor ambiguity aversion using a non-
additive pricing functional. Wang (1996) and Wang, Young, and Panjer (1997) apply a
non-additive functional using distorted probabilities to insurance pricing, leveraging diverse
theoretical underpinnings including Huber (1981), Schmeidler (1986), Schmeidler (1989),
Yaari (1987), and Denneberg (1994). Within this theory, distortion risk measures (DRM)
occur repeatedly and in many guises. Kusuoka (2001) characterize DRMs as coherent, law



invariant, and comonotonic additive functionals. We assume investors price using a DRM.
DRMs are also known as spectral risk measures, Acerbi (2002), because of their weighted-
VaR representation.

DRMs have many appealing properties. However, they are not additive and include trans-
action costs, via an implied bid-ask spread, Castagnoli, Maccheroni, and Marinacci (2004).
Important results from Chateauneuf, Kast, and Lapied (1996), De Waegenaere (2000), and
especially Castagnoli, Maccheroni, and Marinacci (2002) and De Waegenaere, Kast, and
Lapied (2003), show DRMs are consistent with general equilibrium models, even though
they are non-additive. DRMs are consistent with arbitrage-free pricing: the presence of
transaction costs neutralizes apparent arbitrage opportunities caused by non-additivity.

DRMs are practical and easy to work with. Most importantly, they have a natural allocation
of a pool’s diversification benefit back to its members, which we outline in Section 3. The
natural allocation relies on the fact that DRMs are coherent, law invariant and comonotonic
additive.

DRMs respect diversification because they are coherent and hence subadditive. As a result,
pooling two risks with no default will always be advantageous, provided both premiums
are finite. Therefore the failure of pooling must rely on something more than a DRM
pricing functional. The extra ingredient is the interaction between the pricing functional
and solvency regulation.

Finally, we assume there are are no frictional costs for holding capital in an insurance entity.
Cummins (2000) explains that agency conflict, tax, and regulation are the primary causes of
frictional costs. Our model is structured to remove these costs: there are no taxes, there is
no agency conflict because insurers operate like an autonomous contract with no managerial
discretion once they have been set up (like a catastrophe bond), and regulation is limited
to solvency requirements. There is no economic reason why investors have to transfer assets
into the insurer entity at all; it could operate like an old-style Lloyds syndicate provided the
regulator had sufficiently vicious rights to enforce payment.

Castagnoli, Maccheroni, and Marinacci (2004) shows DRMs always have a bid-ask spread.
We do not count the spread as an expense because insurance positions are always long.
Insurable interest laws make it impossible to short insurance.

We assume that a competitive market produces prices that are modeled by a DRM. Kusuoka
(2001) and Follmer and Schied (2011, chap. 4) show that a DRM is entirely characterized by
a distortion function. A distortion function is an increasing concave function g : [0, 1] — [0, 1]
satisfying g(0) = 0 and g(1) = 1. The DRM p, associated with a distortion g acts on a
non-negative random variable X as

p,(X) = / " g(S(a))da. 3)

When p is combined with a regulatory capital function using eq. (1) we get the market
pricing functional

p(X) = p,(X A a(X)). (4)

9



Thus pg(X) is the premium charged for the insurance pool with total risk X. Since the
survival functions Sy and Sy ,, agree on [0,a), Sx,,(z) =0 for z > a and ¢(0) = 0, we get

) a(X)
pE(X) = / 9(Sx o) () = / 9(Sx(x))dz. (5)

We drop the subscript g from the notation below since it is fixed.

Providing a clear motivation for the existence of insurance pools is a significant advantage of
our framework Under perfect markets, there is no diversification benefit because the pricing
rule is linear and hence additive, which means they do not allow a diversification benefit. As
a result, there is no need for a pool. Justifying insurers usually involves an appeal to market
access or transaction expenses, Ibragimov, Jaffee, and Walden (2010) (especially footnote 9
and surrounding discussion). Insurers in our model exist to allow limited liability and to
economize on the use of costly capital.

2.6 Market Assumption Summary
Here is a summary of our insurance market assumptions.

1. Insureds are required to purchase insurance. They are pure price buyers.

2. Insurance must be purchased from a one period, limited liability insurance pool. Pools
can consist of one or more policies. There is no restriction on the size or composition
of pools. Single policy pools are allowed.

3. Insurance pools are required by regulation to capitalize according to a risk-based capital
formula. It is law invariant, positive homogeneous, monotonic, translation invariant,
but not necessarily subadditive. It is taken to be p-VaR for p close to 1. VaR is the
most common measure used in practice.

4. Insurance losses are homogeneous within each pool.

5. There is equal priority in claim payments if the pool defaults because it has insufficient
assets to pay its obligations.

6. Investors provide equity to insurance pools by buying its residual value. Investors
price using a DRM p associated with a distortion g. Equation (5) computes the pool
premium.

7. Insurance pools are costless to form and operate, other than the cost of risk transfer
to investors. There are no taxes.

8. All market participants agree on a set of subjective probabilities. Insurance pools are
transparent, and individuals know the fair market value of their insured claims. The
market is perfectly competitive and acts to remove any excess profits.

Under these assumptions, we now investigate what types of equilibrium insurance pools will
form. To do that, we start by deriving the fair market value of pool insurance to pool
participants.
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3 Market Pricing and the Natural Allocation

This subsection recalls the main results from Major and Mildenhall (2020), which gives a
natural allocation of pool premium, under the assumptions set out in section 2. The natural
allocation transfers perfect market pricing theory to a non-additive, imperfect market setting.

A perfect market pricing functional has the form Eq[-], where Q is a risk-adjusted measure.
The Radon Nikodym derivative of Q defines the state price density. Sherris (2006) and Ibrag-
imov, Jaffee, and Walden (2010) show that the fair premium for risk 7 is simply Eq[X;(a)].
It is an allocation of total premium Eq[X A a] because expectations are linear.

Under a DRM, the state price density Q becomes a function of the risk being priced; it is
the measure solving p(X) = Eq[X], subject to certain other conditions. But we can still
use the perfect market approach to allocate premium, even though Q is no longer fixed.
Specifically, if X = > X, then the fair premium for X; is Eq[X;]. We call this the natural
allocation premium and use the notation py(X;). We will apply the natural allocation
to X Aa = > . X;(a). Since DRMs are comonotonic additive, and since X, X A a and
(X —a)* are all comonotonic, it follows that p(X) = p(X Aa)+ p(X —a)™) and hence that
p(X Na) = Eq[X Aa] for the same measure Q solving p(X) = Eq[X], Shapiro (2012). Thus
the natural allocation to X;(a) is given by Eq[X;(a)] = EQ[X;(X A a)/X].

Expected losses for class 7, accounting for possible default, can be computed by conditioning
on X as

E[X;(a)] = E[E[X;(a) | X]] = E[X; | X <a]F(a) + aE[X,;/X | X > a]S(a).  (6)

Total premium under p is given by eq. (1). We now compute the natural allocation premium
and premium density for each class. Using integration by parts the price of an unlimited
cover on X is

p(X) = / 9(S(x)) dz = / 2g/ (S(x))f(x) dz = E[Xg'(S(X)))]. (7)

It is important that this integral is over all > 0 so the xg(S(x))|$ term disappears. This
shows that Z = ¢’(5(X)) is the Radon Nikodym derivative of the measure Q discussed above.
Thus the natural allocation premium is E[X;¢"(S(X))]. The choice ¢'(S(X)) is economically
meaningful because it weights the largest outcomes of X the most, which is appropriate from
a social, regulatory and investor perspective. Since DRMs are comonotonic additive the same
density can be used for p(X A a). This will not be true for non-comonotonic additive risk
measures.

Applying the same argument to X A a gives the following, essentially unique, expression for
the natural allocation of eq. (1)

pxra(Xi(a)) = Eq[X; | X < a(1—g(5(a))) + aEq[X;/X | X > a]g(S(a)) (8)

/ Xz /
= E[Xz'l{xtgat}g Sy (X)) + a,E yl{xtmt}g Sy (Xy) | - 9)
t
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The premium formula eq. (8) only assumes that capital is provided at a cost g and there is
equal priority by class. There is no need to assume the X, are independent. The formula is
computationally tractable.

As a result of the general theory, we have the following behaviors.

1. In total, the margin is always non-negative for all asset levels.
2. For full coverage, a = oo, the natural allocation premium is always less than the
monoline (stand-alone) premium and contains a non-negative margin.

See Major and Mildenhall (2020) for a complete derivation of these claims.

4 Market Outcomes

This section proves the main market structure results of the paper. We show how premium
varies as a function of the pool mix between two classes with a homogeneous loss model.
Then, we use these results to characterize all possible market structures.

The eight assumptions from section 2.6 hold throughout the section. In particular, the
regulatory capital standard is given by p-VaR.

4.1 How Pricing Varies with Pool Mix

There are two classes of insured, with independent aggregate loss random variables X, and
X,. Losses from a homogeneous pool, with a proportion ¢, 0 < ¢ < 1, of class 1 risks and
1 —1t of class 0, are given by

X, =(1—-t)X,+tX,. (10)

To avoid trivially different equations for class 0 and 1, we will write out expressions for class
1 in full, with the understanding an analogous statement holds for class 0 on replacing ¢t with
1—t.

P(t) := p(X, A a;) denotes the premium for the pool X, with capital a, := VaR,(X;). The
natural premium allocation to class 1 is

X; Na(X,)

X, gl(st(Xt» . (11)

Py(t) := px,pa, (EX1)(a,)) = E [£X,
Clearly P(t) = F,(t) + Py(t). The expression for P;(t) combines three elements: class
losses, the common default pro rata factor, and the probability adjustment reflecting investor
ambiguity aversion. The corresponding premium rate per unit of exposure is

for t € (0,1). Clearly P(t) = (1 —t)Ry(t) + tRy(t). Recall that ¢’(S,(X,)) is the Radon
Nikodym derivative of a measure Q, that solves p(X,) = Eq [X;]. These equations show
the rate is determined as a weighted average of solvent and default parts. When t = 1,

12
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Figure 2: A subadditive capital standard reduces the diversification benefit.

P;(1) = P(1) equals p(X; Aay), the monoline premium for all of class 1, and similarly when
t =0, Py(0) = P(0).

We expect P(t) to be non-constant because the composition and diversification of the pool
varies with ¢. Diversification creates two offsetting effects, illustrated in fig. 2. The left
figure illustrates combining two classes and adding supporting assets. Provided losses are
not perfectly dependent, there will be events where one class has a large loss and the other
a small loss, and where both can be paid in full from a pool while a monoline would cap
the large loss (shaded green triangles). A pool with no reduction in assets is a Pareto
improvement for both participants. Offsetting this unequivocal benefit, the pool, or its
regulator, can use diversification to justify holding fewer assets max(ay,a;) < a’ < a. Pool
insureds are still better off when one or other has a large loss, but the improvement is smaller.
It is possible for this benefit to go too far, increasing risk in very adverse scenarios, Dhaene
et al. (2008). With less capital, pooling is not necessarily a Pareto improvement: there
are fewer assets available when both classes have a large loss simultaneously (shaded red
triangle). Diversification with no reduction in assets improves the quality of insurance and
we therefore expect a higher premium, but the net effect is unclear when asset are reduced.

There is a third dynamic that further complicates the picture. Since a pool will generally
have more a predictable, less ambiguous outcome distribution it will be more appealing to
investors. As a result, the fair premium will include a lower margin. Note this does not
create an economic benefit for insureds or a more competitive product: all premiums are fair
relative to the protection they provide. These off-setting factors make the impact of pooling
on premium P indeterminate.

Figure 3 illustrates how premium and rate typically varies with mix. After explaining the
figure, we will characterize the range behaviors more precisely. The left plot shows rate and
the right plot shows both rate and premium. The horizontal axis shows pool mix ¢. X and
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X, are independent gamma variables with E[X;] = 100 and coefficient of variation 0.25 and
0.30 respectively. Both lines are thin tailed and have log concave densities. To show various
behaviors more clearly, the model uses a weak 0.90 VaR capital standard and an expensive
insurance, priced using a proportional hazard distortion g(s) = s%-3.
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Figure 3: Typical behavior of pricing variables. Horizontal axis ¢ determines the pool mix
as (1 —1)X, +tX;.

The figure illustrates several behaviors.

The premium rate R,(t) for each class (blue and orange) and total premium P(t)
(green). The three lines intersect at a point around ¢ = 0.4. They will always meet
because the total premium is a (1 —¢,t) weighted average of the by-line rates. They
generally do not intersect at the minimum premium.

On the left, the horizontal shaded bands (which overlap in the grey) show the range
from monoline expected loss E[ X Aa;] up to the monoline premium p(X; Aa;) for each
class. Because the capital standard is weak monoline expected losses are < E[X] = 100
by limited liability. Since X, is more risky than X it has a lower expected loss and
higher monoline premium.

R,(1) = P(1) and R(t) bows up above P(1) and is greater than P(1) for ¢t > t* = 0.544.
This reflects the fact X, benefits from pooling with X,,. Similar comments apply to
R, near t = 0; its rate is above the monoline rate for ¢ < ¢, = 0.296. The critical ¢
values are shown in the legend.

The total premium line only gives the premium for the (1 — ¢, t) weighted pool (it is
the rate for the pool); it does not give the total market premium because the blended
portfolio can only include all risks in the special case t = 0.5. When ¢t # 0.5 the
multiline pool with include all of one class, but the other will be split and partially
written in a monoline pool.
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e On the right, the triangles show the premium as opposed to rate. The lines Lin show
tP(1), etc. and P show the premium.

For the purposes of understanding premiums and rates it is instructive to start by considering
the case where one line is a constant. Suppose that class 0 has certain losses, X, = x, and
hence ay = zy and P(0) = Ry(0) = x, (because p is coherent and hence translation invariant,
meaning p(X + ¢) = p(X) + ¢ for constant c).

Starting from a monoline X, pool consider the impact of adding a small amount of X,
corresponding to t decreasing from 1. Pool assets are a, = (1—t)z,+ta;. Both lines are paid
in full in non-default states. In default states, class 1 will recover a,E[tX;/((1—t)z,+tX;) |
X, > ay] > ta;” and hence class 0 will recover less than (1 — t)z,. In a sense, default is
caused by class 1 having a large loss. By the action of equal priority, it recovers more than
it would from a monoline pool. As a result, assets are transfered from class 0 to class 1 in
default ex post. To compensate for this, class 1 must pay a higher ex ante premium. Thus
R, (t) > P(1) (Ry(t) < P(0)) for ¢ close to 1. The amount by which the pooled rate exceeds
(falls below) the monoline rate will increase as the capital standard becomes weaker because
default states become more important.

On the other hand, starting from a monoline X, pool, still with certain losses, consider the
impact of adding a small amount of X, corresponding to ¢ close to 0. For class 0 we have

Ry(t) = E[Xo ¢ (S1(X1)1x, <a3] + @E[Xo/ X, 9" (S1(X0) x50,

= (1 = (1 = )+ gl 0 (51 (X)) x|

< zo(1—g(1=p)) +209(1 —p)
=x;
(1 —t)xy+tay
(1—t)zy +tX,
R, (t) = E[(Xy g/(51<X1>>1{X1§a1}] + a,E[X, /X, g/(51<X1)>1{X1>a1}]
= E[(X, ¢/ (S (X)L x, <ay] + G E[X /X, 0/ (S (X)) L, 20 )]

= P(1)

since < 1 when X; > a,. For class 1

according to a, % a, i.e., x % a,. This makes sense: if x; > ay, then by pooling with X,
class 1 obtains access to relatively more capital per unit of loss, which improves quality and
raises price. Notice that S| is used throughout; the ordering of outcomes is determined by
X, alone.

Figure 3 illustrates these behaviors. For ¢ near 1, R(t) > P(1). In this case z, < a; and so
R,(t) < P(1). This corresponds to the orange rate line bowing up above the level P(1) for
large ¢ and then decreasing below P(1) for small ¢t. There is a similar, but less pronounced,
effect for class 0 near t = 0.

X, ta; + (1 —1t)z0
ay tX, +(1—t)z0

2The inequality holds if

> 1 which is true iff X; > a;.
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4.2 Basic Results

The next theorem summarizes properties of premiums and rates by class. We say a function of
t is differentiable if it is differentiable on (0, 1), right differentiable at 0 and left differentiable
at 1.

Theorem 1. Suppose the distributions of X, are independent with a jointly continuous
density and that the distortion g is differentiable on [0,1]. Then

1. S,, a,, P(t), o, and B; are differentiable.

(%
2. In the case of full coverage, p = 1, the rate for each class lies between the expected loss
and the stand-alone premium

ELX,] < Ry (1) < p(X, Aay) (12
fort e (0,1).
3. For allp and allt € (0,1], Ry(t) < p(X;).
4. Py(t) is differentiable and R, (t) is differentiable on (0,1].
5. If p(X;) < oo, then for all p < 1, R (t) > tP(1) fort sufficiently close to 1 provided

%) aq
SE. | % x . 13
e, ~ o {Xl' >] 13)

0. hmtw Ry(t) > E[X;](1 —g(1 —p)).

Comments. The assumption on g rules out lim, 4 g(s) > 0. Since g is concave it is differ-
entiable almost everywhere. Since the distributions are continuous S,(a,) = 1 — p for all
t. p(X;) is the price for unlimited cover, which is generally > P(1). The first assumption
is not overly restrictive because by Lusin’s theorem we can approximate any measurable
function closely by a continuous one. The assumption eq. (13) in Part (5) is always true for
reasonable parameters because a, > E[X] (capital is greater than expected losses) whereas
the right-hand side is manifestly < 1. Equation (13) can fail if X is very thick tailed and
the VaR capital is below the mean. This is the well known failure of VaR for very skewed
risks. The condition also fails if E[X;] = oo and the right hand size is positive.

Proof:

1. Differentiability of S, and a, under these assumptions is proved in Tasche (2001). See
77?7 for the exact derivatives. Differentiability of P follows from

dP d [
T i) e ds

a“ ds, da
= [ oS @ da + g(Sia

using McShane p.218 to justify differentiating through the integral. Similarly, we can
differentiate o and f through the integral.
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. Follows from Major and Mildenhall (2020), Proposition 1 on multiplying by ¢. The no
undercut does not require independence, but positive margin does.

CR,(t) < p(X))iff P(t) < p(tX,). Let X, be the random variable equal to payments al-
located to class 1 under equal priority. Then X 1 < X, for all outcomes. p is monotonic
because it is coherent and therefore p(X,) < p(X,). Finally, P,(t) = E[X,¢'S,] <
supq Eq [X,] = p(X,) since ¢'S, is a legitimate test measure for computing p.

. P, (t) is differentiable because Part (1) shows all its constituent parts are differentiable.
It follows that R, (t) = P;(t)/t is differentiable for ¢ > 0.

. To simplify the formulas, write ¢’S, = ¢'(S,(X,)) and 7 = (1 — t)/t. Then, for ¢
sufficiently close to 1:

/ X /
Ry (t) = E[X11{that}g Sy +a,E {Yll{xtmt}g St:|
t

/ X /
~ E[X 1 1ix,<a,y9" 1] + (tag + (1 —t)ay)E [Yll{xlml}g 51] :
t

This implies

X / /
Ry (t) — P(1) = (ta; + (1 — t>a'0>E[_11{X1>a1}g 51— alE[l{X1>a1}g S4]

Xt

tX, ta, + (1 —1t)a, ,

=E LtX1 F(1-0X, / ~ 0 Lxsa 905
1 /

=E m(% +7ag) —ay - lix 50,39 51]

Xl

X /
~ [(1 - Tfi)(% +7ag) —ay - lix,5a,19 51}

X /
— TE |:<a/0 - alX—(1)> . 1{X1>a1}g Sl:|

/ 1 /
=T (%E[l{xlml}g S1] —a, E[X]E {Z lix,5a19 Sl])

where the last line follows from the eventual independence of X,. The final expression
is clearly positive iff eq. (13) holds.
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6. This follows because

: > lim
l;fglRl(t) > llnn_1>£fR1<1/n)

. . / X /
= liminfE[ X, g Sl/nl{Xl/néal/n}] + al/nE[—X ; g Sl/nl{Xl/n>a1/n}]
1

n

> liminf E[Xlglsl/nl{xl/ngal/n}]

2 E[Xl lim mfg/‘sl/nl{Xl/nSal/n}]
> E[X19"S01x,<a,}]
= E[X,](1 —g(1—p))
by Fatou’s lemma and independence.
O

Examples show that a condition stronger than Part (5) holds, however, we have been unable
to find a general proof. It is therefore cast as an assumption and we explain why it is
plausible. It is called Condition M for monotone.

Condition M. If p(X;) < oo, then for all p < 1, R;(¢) has at most one turning point in
(0,1), which is a maximum.

When there is a turning point, Assumption M means that R,(t) increases monotonically to
a maximum > P(1) and then decreases to R;(1) = P(1). It can also decrease monotonically
to P(1), when p(X;) is infinite, or increase monotonically to P(1), in the case of unlimited
cover. Assumption M implies there exits t* so that R,(t) > ¢P(1) for all ¢ > ¢*, and
R,(t) < tP(1) and R,(t) is non-decreasing for ¢ < t*. Similarly, there exists ¢, so that
Ry(t) > (1 —t)P(0) for all ¢t < ¢,, and Ry(t) < (1 —t)P(0) and Ry(t) is non-increasing for
t > t,. These behaviors are evident in fig. 3, with ¢, = 0.296 and t* = 0.544.

Why is condition M reasonable? The slope of R,(t) is determined by the amount of assets
available per unit of loss for class 1, the share of those losses class 1 captures in default,
and the impact of class 1 on the risk load. The first effect is generally decreasing in ¢ at a
decreasing rate: a, ~ (1 — t)ay + ta, so relative assets are a,/t = Tay + a; and t — 7 is
decreasing in t at a decreasing rate. The second effect is increasing in ¢t at a decreasing rate:
as class 1 becomes larger it becomes more correlated to total losses, 3; ,(z) is increasing in ¢
for all z. And the third effect is also increasing in t at a decreasing rate for the same reason.
Until the first effect dominates and R, (¢) is increasing, thereafter it decreases.

Going forward we assume Condition M holds.

It is possible for R{(1) to be so negative that P{(1) < 0, i.e., premium increases absolutely
for line X as its proportion in the pool decreases. This occurs when class 1 is very volatile
and class 0 is very large and very thin tailed.
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4.3 Characterization of Possible Market Structures

Different pools, with different mixes by class, provide different covers. Although the premi-
ums vary by class for pools with different mixes, all the premiums are fair values. Premium
differences reflect different payments each pool will make in default states. Insureds select
between pools solely on the basis of price; they do not consider the quality (payment) differ-
ences. In this section we explain why we can assume there is at most one monoline pool for
each class, and one multiline pool. We then show how to determine which outcome occurs.

The homogeneous loss model, combined with positive homogeneous risk-based capital and
investor pricing formula functionals, implies the economics of any pool only depend on its
mix of business and not on its size. Premium, loss, risk, and capital all scale with volume;
loss ratio and return on equity are size-independent.

Trivially, monoline pools within a class all have the same mix, and therefore their economics
are independent of size. Hence, we can merge all the monoline pools by class into one,
and assume that the merged pool includes all the risks not in multiline pools. This is an
important simplification. As a result, our homogeneous loss model is the perfect laboratory
in which to study the pooling problem because it puts all the focus on the composition of
pools.

Next we explain why there can only be one multiline pool. If P(t) > (1 —¢)P(0) + tP(1)
then one or both allocated rate is greater than the monoline rate: Ry(1 —¢) > P(0) or
P;(t) > P(1). If this is true then there is no pooled solution at t—insureds will never pay
more than the monoline rate. Therefore, any pool occurs with mix ¢ satisfying t, <t < t*. By
Condition M, the natural premium rate for each risk in a multiline pool varies monotonically
with the proportion of each class in the pool for ¢, < t < t*. Therefore, two pools with
different proportions of each class have different rates by class. Each class has a definite
preference for the cheaper of the two pools. As a result, a market with two multiline pools
with different mixes cannot be in equilibrium. When the mixes are the same, the two pools
can be combined by homogeneity. Therefore we can assume there is only one multiline pool.

These two observations show the market structure is determined by a single decision variable:
the mix by class in the multiline pool.

If a multiline pool has ¢ < 0.5 then it can be scaled up to include all the class 0. If ¢ > 0.5 it
can scale to include all the class 1 risks. In both cases, homogeneity implies the economics
are independent of pool scale. Thus there are just three structures that can occur:

1. £ =0.5: complete pooling in a single multiline pool;
2. t =0, 1: no pooling with two disjoint monoline pools; or
3. 0 <t<1:t=+#0.5: partial pooling with a multiline pool and a monoline pool.

In structure 3, all of class 0 is pooled for 0 < ¢t < 0.5 and all of class 1 for 0.5 < ¢t < 1.
The remaining risks are monoline. Note that ¢ = 0 and ¢ = 1 define the same outcome.
Outcomes are topologically a circle.

Our central question is to determine conditions under which each structure occurs. And
when structure 3 occurs, what determines the proportions, whether an individual is pooled
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or monoline, and how is the diversification benefit distributed? Building on the observations
above, the following Theorem presents the answer.

Theorem 2. Under the standing assumptions from section 2.6, the assumptions of the
previous theorem, amd Assumption M we have

1. If P(t) is concave then there is no pooling.
2. Ift, < 0.5 < t* there is complete pooling.

3. Ift, > t* there is no pooling.
4

DIft, <t <05 (0.5 < t, < t*) then the equilibrium is at t = t* (resp. t = t,) and
there is partial pooling.

Proof:

By market assumption 1, that insureds are pure price buyers. A market with prices greater
than monoline rates will not be in equilibrium because risks will defect into a cheaper
monoline pool. This has two implications. First, if P(¢) is concave then for each t ei-
ther Ry(t) > P(0) or Ry(t) > P(1). Thus there is no viable solution other than t = 0 or
t =1, giving Part (1). Second, the feasible range for a solution is ¢, < ¢t < t*. For t < t, the
pool rate for class 0 is greater than the monoline rate, so it will not pool. And for ¢ > t* the
same holds for class 1.

We can now determine the market equilibrium, determined by t.

o Ift, < 0.5 < t*and t =# 0.5 then risks left in the monoline pool, paying a higher rate,
will offer to pool at a slightly more advantageous proportion, i.e., lower rate, for the
other class and the pool will unravel. The pool is only in equilibrium when there are
no risks left in monoline pools, i.e., when ¢ = 0.5 and we have structure 1, showing
Part (2).

o If ¢, > t* there is no overlap of feasible solutions and we are in structure 2 with no
pooling and two monoline pools. The feasible region only contains the point t = 0 = 1,
remember 0 and 1 define the same outcome. This shows Part (3).

o Ift, <t* < 0.5 then the equilibrium is at ¢ = ¢t* and we have partial pooling, structure
3. The multiline pool contains all of class 0 and a proportion of class 1. Class 0 gets
the benefits of diversification and pays less than its monoline rate. Class 1 pays its
monoline rate. Class 0 has the negotiating power: it only needs to attract a portion of
the class 1 risks and it knows there are always class 1 risks paying the monoline rate,
so that acts as a bogey. It can offer to pool at a proportion ¢* — € for small € > 0. This
produces a price R, (t* —e€) < R,(t*) = Ry(1) below the monoline price, which will be
enough to attract as many class 1 risks as needed. If € > 0 then the class 1 risks who
remain in a monoline pool, paying a higher rate, have an incentive to offer to pool at a
share t* —€/2 to class 0. The original pool will unravel as this will be a lower price for
class 0. Thus the equilibrium is at t*. Class 1 has no negotiating power because there
will always be risks in its monoline pool, whereas all class 0 is entirely in the multiline
pool. Similarly if 0.5 < t, < t* then the multiline pool contains all class 1 and some of
class 0. Now class 0 pays the monoline rate and class 1 benefits from the pooling with
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a lower rate. The equilibrium is at ¢ = ¢, showing Part (4). O

When partial pooling, structure 3, applies, the fully pooled class captures all of the diversifi-
cation benefit and the split class pays its monoline rate. Since the degree to which the rate
function bows up from the monoline rate is drive by how volatile it is, the pooled class will
be lower volatility and the split class higher. Thus the capital standard will increase the cost
for the more volatile class. An attempt to lower costs by decreasing the capital standard
could back-fire because a split solution is more likely with a lower capital standard.

Examples show complete pooling generally applies, especially when the two classes are of
comparable volatility or the capital standard is very strict. Complete failure, with two
monoline pools occurs for example when X, X, are very thick tailed or when VaR is not
subadditive.

All the equilibriums are Pareto optimal because of the shape of Ry(t) and R, (t) at t: one is
increasing and one decreasing so it is not possible to make both classes better off. Changing
t will increase the rate for at least one class.

Returning to fig. 3 we see that its equilibrium is complete pooling, structure 1, since t, =
0.206 < 0.5 < 0.544 = t*.

It is highly unlikely the solution is at the minimum of P(¢). That solution only includes all
risks when the minimum occurs at ¢ = 0.5.

A reinsurance can be used in structure 3 to provide a blended rate to the split class. Suppose
class 1 is split. The reinsurer enables a solution with proportion ¢ where ¢, < t < t* by
assuming class 1 from the monoline and the pool in return for a blended rate. However,
without an enforcement mechanism this is not a stable solution. Members of class 0 have an
incentive to offer reinsurance pool participants the true, lower, multiline rate unless t = t*.
In that case the pool would unravel as before.

As the capital standard strengthens the rates bow up less and the feasible region gets broader.
With unlimited liability, i.e., a = oo, the market pricing functional reduces to the investor
functional, which is coherent. In that case pooling is always optimal provided both premiums
are finite. This follows from Proposition 2: for a coherent risk measure the natural allocation
always contains a non-negative margin and is less than the monoline rate (no-undercut).
Thus the natural allocation premium P, (t) satisfies E[tX;] < P;(t) < p(tX;). Since p
is positive homogeneous, dividing by t gives E[X;] < R,(t) < p(X;). Note p(X;) is the
monoline premium for unlimited cover.

The right hand plot of fig. 3 illustrates these points. The two shaded triangles show the
segments bounded by E[X;] and p(X;). The thicker premium line is within the segment
precisely when the rate is between monoline loss cost and premium. The green band shows

the corresponding bounds for total premium.
The following behaviors are evident.

1. Full pooling is more likely with a stronger capital standard. In the limit of full coverage,
we always get full poling provided the full coverage premiums are both finite. If one or
other premium is infinite full pooling will not be an equilibrium solution. Coherent risk
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5

5.1

measures on unbounded variables must sometimes assume infinite values by Delbaen
(2002), Theorem 5.1.

For thin tailed lines with log concave densities full pooling is more likely with more
expensive pricing. (Expensive pricing means a greater markup over expected loss.)
The opposite is true for thick tailed lines. Thin tailed lines are concentrated near the
mean and large losses occur when each component has a somewhat above average loss.
In this situation pooling is not greatly beneficial. thick tailed lines are concentrated
away from the mean. A large loss occurs from a large loss on one component and a
small loss on the other. This situation benefits from pooling and results in superior
pooled coverage, which therefore costs more. Thus the market pricing operator fails
to be subadditive.

Classes with unbalanced tails are more likely to result in solution 3 than balanced
classes. This follow for the same reason as the second case of 2.

Examples

Structure 2: No Pooling

Rate by Class and Total Details of Premium and Rate
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Figure 4: Market equilibrium structure 2: two monoline pools.

In fig. 4 X, is a lognormal with unlimited mean 100 and o = 1.5 and X, is a very heavy
tailed Pareto with unlimited mean 10 and a = 1.2. The right hand plot shows the (green)
premium line bows up from the line connecting the two monoline rates, meaning there can
be no pooled solution. The weighted average of two rates lower than the monoline rates has
to lie below the line connecting them.

In this example P(t) has a maximum at ¢t < 1 and is actually decreasing for ¢ close to 1.
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Pooling a small amount of (the much larger) X, greatly increases the assets available and
X, captures an outsize proportion of them in default because of its thick tail. As a result
its absolute premium increases as t decreases from 1, not just its premium rate.

Since X, is actually quite thick tailed Ry (t) > E[X] for all ¢: the blue rate line stays in the
shaded blue area on the left.

5.2 Structure 3: Partial Pooling

Rate by Class and Total Details of Premium and Rate
250 250
200 200
150 1 150 1
— X0 = X0 > 0.628
X1 X1 < 0.647
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.|
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Figure 5: Market equilibrium structure 3: partial pooling.

In fig. 6 illustrates several interesting features. X, is a lognormal with ¢ = 1.5 and unlimited
mean 150; X is Pareto with unlimited mean 50 and o = 1.9, so both lines have very thick
tails. The capital standard is VaR 0.9 and pricing uses a proportional hazard g(s) = s/,

The figure shows the following features.

1. P/(t) > P(1) for t close to 1.

2. P has an inflexion point and is sub-additive for ¢ € [0,0.7] and super-additive for
t €10.7,1.0].

3. The feasible region is very small, approximately [0.628,0,647], which does not include
t = 0.5 and therefore we have partial pooling, structure 2.

The drop in R, for ¢ close to zero is a numerical artifact.

5.3 A Realistic Example

To draw out different behaviors, the two previous examples use more extreme parameters
that would normally apply to an insurance book. Our final example shows more typical
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parameter values to illustrate a generic view. It results in a full pooling structure. Class 0 is
gamma, mean 150 and coefficient of variation 0.15 typical for a low limit liability book. Class
1 has a lognormal distribution with a mean of 100 and ¢ = 0.3. It represents a higher limit
book. The distortion is g(s) = s, which is in-line with distortions calibrated to market
pricing, and the capital standard is Sovlvency II, p = 0.995.

Rate by Class and Total Details of Premium and Rate
160 4 160 4
140 - 140 -
120 1 120 1
100 - 100 -
— X0 mm X0 > 0.0172
80 A X1 X1 < 0.875 80
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60 60
40 40
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Proportion X1 Proportion X1

Figure 6: Market equilibrium structure 1: full pooling with parameters reflecting a liability
and property insurance portfolio.

It may appear that fig. 6 shows only small differences between classes. Low volatility in-
surance is a very competitive business, written with very thin margins. Figure 7 shows the
implied loss ratios by class. These are comparable with combined ratios, since our model
excludes expenses. The loss ratio differences are material. The equilibrium, ¢ = 0.5 shows
class 0 written at 98.4 percent vs. its monoline rate of 97 percent. Class 1 is written at 94.5
percent vs. 93.5 percent. Thus class 0 achieves a 1.4 percentage point decrease in loss ratio
from pooling vs. 1 point for class 1.

5.4 Note on the Computations

The computations underlying each figure were performed using discrete approximations with
216 equally sized buckets and a sample of 21 values of ¢ in [0, 1] inclusive. Convolutions are
performed using Fast Fourier Transforms (FFT), Grubel and Hermesmeier (1999), Mildenhall
(2005). The calculations are essentially exact other than a minor discretization error. The
conditional expectations needed for x; are also be performed using a FFT
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Figure 7: Loss ratios by class across different portfolio corresponding to fig. 6.

6 Conclusions

We have presented a novel but realistic model of a two class insurance market. The market
includes a compulsory insurance requirement, capital regulation, and costly capital but oth-
erwise is efficient. Depending on the aggregate loss characteristics of the two risk classes the
Pareto optimal market equilibrium can be two monoline pools, a monoline and a multiline
pool, or one multiline pool. In general when the classes are comparably risky there is one
multiline pool. When a more risky class is combined with a less risky one, the less risky class
often gets the benefit of pooling and pays a rate below its monoline premium while the more
risky class pays its monoline premium. Stricter capital standards make more complete pool-
ing more likely because it increases the importance of economizing on capital. There is no
pooling when the risk have extremely thick tails and the capital standard is not subadditive.

Reinsurance can be used to pool premium rates, but without an enforcement mechanism it
does not provide a stable solution.

The results are consistent with observed market structure in US property-casualty insurance,
where more volatile lines are often written by monoline companies. Florida homeowners and
medical malpractice liability are two examples. It is also consistent with the existence of
highly leveraged, low risk pools, such as monoline auto writers.
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