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Abstract

This paper investigates equilibrium risk pools in a market with risk-based solvency
regulation and costly capital. It considers a market with two classes of risk, each hav-
ing different aggregate volatility characteristics, such as personal auto and catastrophe
exposed property. It identifies three possible equilibrium solutions: a single multiline
pool, a multiline pool and a monoline pool, and two monoline pools. It determines con-
ditions under which each of the three solutions occurs. The requirements are sensitive
to the relative tail risk of the two classes and the capital standard. The model shows
that the more volatile risk class bears a higher proportion of the capital cost. The
results help explain various features seen in insurance markets, including the structure
of the Florida homeowners market and the US medical malpractice market, and it can
be applied more broadly to any regulated risk market.

JEL Codes: G22, G10

1 Introduction
Risk is better shared. The famous mutuality principle states that diversifiable risk should be
removed by pooling. Remaining non-diversifiable risk is borne by each agent in proportion
to their share of aggregate risk tolerance, Eeckhoudt, Gollier, and Schlesinger (2011). These
results produce a world where risk-averse agents optimally pool all their risk.

In the real world, there is generally no way to pool risks in the manner envisioned by theory,
a fact that Arrow (1996) uses to explain the smaller than expected role of insurance in a
modern economy. Practical insurance involves limited liability insurance pools whose payouts
are state-independent. The pools must attract capital in a competitive market where it has
a non-zero opportunity cost. As a result, risk pooling is expensive and has a cost above
actuarial estimates, even before transaction and frictional costs.

The benefits of pooling lead us to expect that a few large multiline companies should domi-
nate the insurance market. Indeed, large multiline carriers write a substantial proportion of
business. But looking more closely, we see many deviations from the pooling-is-best hypoth-
esis. There is incomplete pooling between personal lines and commercial lines. Commercial,
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which is a more volatile business, having higher limits and a more severe pricing cycle, tends
to be written by smaller companies. And over 2,600 property-casualty insurers operate in the
US. Monoline companies write a disproportionate share of volatile business, such as Florida
homeowners business, California earthquake, and medical malpractice. (Note that monoline
companies write US mortgage guaranty for legal reasons.) What explains this structure?

Cost-based factors, economies or dis-economies of scale, and management span and control
provide one explanation, Cummins et al. (2010). These are undoubtedly important. But,
since this is a question about risk it should have a risk-based answer, and that is what this
paper seeks to provide.

In recent work, Ibragimov, Jaffee, and Walden (2018) state that basic structure questions
in a risk market with one-sided protection remain unanswered. Working in a perfect market
with frictional costs of capital they show that monoline solutions are more likely when risks
are asymmetric or correlated and that multiline pooling solutions are more likely for well-
behaved and independent risks. This paper comes to qualitatively similar results but uses a
entirely different market model.

We show that under certain realistic assumptions when two risk classes buy insurance from
capital-regulated, limited liability insurance pools facing costly capital, there are three pos-
sible market outcomes. There can be one pooled insurer, two monoline insurers, or one
pool insurer and one monoline. One pool is the usual solution. Two monoline pools occur
when the regulator capital function is super-additive, generally when insurance risk is very
thick-tailed, Ibragimov and Walden (2007). In the third case, the higher volatility class
splits between the pool and the monoline, and the lower risk class appropriates all of the
diversification benefits. The higher risk class pays its monoline rate. This result is likely
counter to insurance affordability and availability goals for the high risk class. These effects
are more pronounced for weaker capital regulation and cheaper insurance.

The market structure solutions emerge from the interaction between the investor’s view of
risk and the regulator’s. Even when the investor and the regulator risk measures are both
coherent, their combination, which determines market prices, can fail to be subadditive.
This failure results in monoline solutions. Our results extend Ibragimov, Jaffee, and Walden
(2010), which had the critical insight that there is essentially only one marginal cost capital
allocation consistent with pricing. Their marginal cost view becomes our marginal regulatory
capital, and we replace their perfect market pricing model with an imperfect model.

A primary goal for this work is to answer market structure questions in a framework consis-
tent with the real insurance market. Our title flags the two realities with which we are most
concerned: regulation and costly capital. We address our approach to each in the next two
subsections, starting with regulation.

1.1 Regulated Market
Our model assumes that insurance is compulsory and is bought for the protection of others.
As a result, the buyer has no interest in its quality, and so solvency regulation is necessary
to ensure the insurance requirement functions effectively, Cummins (1988).
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Aon Benfield (2015) estimate that around 60 percent of global property-casualty premium is
compulsory or quasi-compulsory. Broadly interpreted, compulsory insurance includes auto
liability, much property insurance providing collateral protection, contractual general liability
and surety, and workers compensation for employers, amongst other lines. Flood insurance,
but curiously not earthquake, is required to obtain a mortgage in the US on an at-risk
property. We use compulsory as a catch-phrase to include any legal, contractual, or doing-
business requirements.

Generally, compulsory insurance must be bought from a licensed insurer, operating under
risk-based capital regulation. US conforming mortgages require property insurance from an
insurer with an adequate rating from a nationally recognized statistical rating organization.

We argue that insureds have no interest in the quality of their insurance either because they
are judgment proof or because residual claims are covered by a guaranty fund or both. As
a result, insureds are pure price buyers provided the insurance satisfies their compulsory
insurance requirement.

1.2 Costly Capital
The theory of multiline pricing typically assumes a perfect complete market, but with a
frictional cost of holding capital in an insurance company, Phillips, Cummins, and Allen
(1998), Myers and Read (2001), Sherris (2006), Ibragimov, Jaffee, and Walden (2010), and
Cummins (2000). These assumptions imply that diversifiable insurance risk is not priced.
The catastrophe (cat) bond market is inconsistent with these implications. A cat bond is
deliberately structured to minimize frictional costs: it has no management, it is domiciled in
a tax-free jurisdiction, and is very lightly regulated. And yet cat bonds are typically priced at
two to ten times best-estimate losses (see www.artemis.bm for examples of cat bond pricing).
Investors charge for bearing risk beyond the cost of holding capital in insurance entities.

Which risks do investors price? All theories price systematic, non-diversifiable risk. And
while hurricane or earthquake are conceivably systematic, the idea becomes less credible for
minor perils covered by cat bonds at substantial margins. On the other hand, it is hard
to argue that investors price pure roulette lottery risk since the mechanisms to pool and
manage it are so evident. But this is a false dichotomy. Insurance is not a roulette lottery.
In the phrase of Anscombe and Aumann (1963) it is an uncertain horse lottery, governed
by unknown and ambiguous subject probabilities rather than unique objective ones. There
is extensive evidence that investors are ambiguity averse, Ellsberg (1961). Underwriters
consider a one in one hundred year event risky primarily because they do not have one
hundred years of experience. Its objective probability is uncertain. Data is more abundant
for more frequent events, and uncertainty is lower. Zhang (2002) and Klibanoff, Marinacci,
and Mukerji (2005) describe ambiguity relevant to insurance pricing. The latter paper has
been applied in an insurance context by Robert and Therond (2014), Dietz and Walker (2017)
and Jiang, Escobar-Anel, and Ren (2020). Note that it is hard to distinguish risk aversion
from ambiguity aversion because risky thick-tailed distributions are also more ambiguous.

We assume that the insurance market is imperfect. Investors are ambiguity averse but not
necessarily risk-averse. Market prices incorporate investor ambiguity aversion using a non-
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additive pricing functional. Wang (1996) and Wang, Young, and Panjer (1997) apply a
non-additive functional using distorted probabilities to insurance pricing, leveraging diverse
theoretical underpinnings including Huber (1981), Schmeidler (1986), Schmeidler (1989),
Yaari (1987), and Denneberg (1994). Within this theory, distortion risk measures (DRM)
occur repeatedly and in many guises. Kusuoka (2001) characterize DRMs as coherent, law
invariant, and comonotonic additive functionals. We assume investors price using a DRM.
DRMs are also known as spectral risk measures, Acerbi (2002), because of their weighted-
VaR representation.

DRMs have many appealing properties. However, they are not additive and include trans-
action costs, via an implied bid-ask spread, Castagnoli, Maccheroni, and Marinacci (2004).
Important results from Chateauneuf, Kast, and Lapied (1996), De Waegenaere (2000), and
especially Castagnoli, Maccheroni, and Marinacci (2002) and De Waegenaere, Kast, and
Lapied (2003), show DRMs are consistent with general equilibrium models, even though
they are non-additive. Perfect market pricing functionals are linear and hence additive,
which means they do not allow a diversification benefit. DRMs are consistent with arbitrage-
free pricing: the presence of transaction costs neutralizes apparent arbitrage opportunities
caused by non-additivity.

A DRM is a special case of a Choquet integral. It is defined by a distortion function, which
is an increasing concave function from [0, 1] to itself. Distortion functions price a binary
insurance policy as a function of its probability of loss.

DRMs are practical and easy to work with, and, most important, they have a natural
allocation of a pool’s diversification benefit back to its members, which we outline in Section
3. The natural allocation relies on the fact that DRMs are coherent, law invariant and
comonotonic additive.

DRMs respect diversification because they are coherent and hence subadditive. As a result,
pooling two risks with no default will always be advantageous, provided both premiums
are finite. Therefore the failure of pooling must rely on something more than a DRM
pricing functional. The extra ingredient is the interaction between the pricing functional
and solvency regulation.

Finally, we assume there are are no frictional costs for holding capital in an insurance entity.
Cummins (2000) explains that agency conflict, tax, and regulation are the primary causes
of frictional costs. Our model is structured to remove these costs: there are no taxes, there
is no agency conflict because insurers are an autonomous contract with no discretion (like a
cat bond), and regulation is limited to solvency requirements. There is no economic reason
why investors have to transfer assets into the insurer entity at all; it could operate like an
old-style Lloyds syndicate provided the regulator had sufficiently vicious rights to enforce
payment.

1.3 Other Literature and Context
An extensive literature considers optimal risk-sharing between two risk classes. In contrast,
we assume that insurance transfers risk to a separate investor group, independent of the risk
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owners. Ibragimov, Jaffee, and Walden (2018) call this one-sided protection. Broadly, the
global insurance market operates in this manner. For example, Canadian pension funds are
significant investors in US catastrophe insurance-linked securities: investors form a distinct
group from risk owners. We ask whether it is most efficient for all insureds to combine into
one multiline pool when accessing investors.

We can consider risk pooling as a reinsurance question. Doherty and Tinic (1981) suggest
that reinsurance can increase the value of an insurer by decreasing its probability of default,
thereby increasing the premium rates it can charge. Our model is consistent with this view,
explicitly varying premium by default probability.

Cummins, Dionne, and Gagne (2008) shows that reinsurance is expensive but significantly
reduces the volatility of loss ratio, reducing insolvency risk, and improving financial strength.
Insurers accept these higher costs to reduce their underwriting risk. Insurers and pool
management are focused on risk, and they drive the process of minimizing capital costs,
whereas insureds only focus on price. In our model, insurance pools are a transparent pass
through, but they have a legitimate interest in the shape of risk because it drives their cost
of capital. Therefore, there is a potential role for reinsurance.

In our model, reinsurance pools premium rates rather than risk. If it were optimal to pool the
risks, then they would be pooled directly in the first place. Differential premium rates can be
an impediment to this pooling that reinsurance can help overcome. Reinsurance does not lead
to a new equilibrium solution because the possibility of direct contracting makes reinsurance
pools are unstable and, absent some enforcement mechanism, they unravel. Surprisingly
pools with reinsurance have less risk pooling than those without it.

Our work is related to cost allocation. Tsanakas and Barnett (2003) computes an Aumann-
Shapley cost allocation for a DRM. These costs provide cost signals to management to
use to optimize their risk pools, assuming marginal revenue rates are constant. Ibragimov,
Jaffee, and Walden (2010) had the insight that marginal cost to the pool drive allocations,
whereas value to the insured drives marginal revenue. The two rarely align when a regulator-
mandated risk measure controls capital. As a result, management will see an opportunity to
modify pool composition to realize excess profits. This behavior is not allowed in our model
because we assume perfect information, and insureds will not pay above fair market value
for any insurance cash flow.

Our model is not concerned with individual risk tolerance; insureds purchased because in-
surance is compulsory. Insureds may or may not be risk-averse. For the same reason, we are
not worried about the structure of optimal insurance policies.

1.4 Contribution and Contents
This paper offers the following contributions.

We show that it is practical to work in a realistic, imperfect market and obtain explicit
premium, loss, and capital allocation results uniquely by using a DRM pricing measure.

We contribute to the problem of the equilibrium industry structure. We show that a market
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with two classes of risk will consist of one multiline carrier, two monolines, or a multiline and
a monoline. This last split result generally obtains when one class is more risky than the
other. In that case, the less risky class appropriates all the diversification benefits. These
results depend on the capital standard and highlight that regulation can have unintended
consequences.

We provide new insight into how limited liability and diversification interact. Limited liability
produces subsidies between lines, which offset the benefits of diversification. These effects
are more pronounced when the capital standard is weaker. In a dynamic model, they can
introduce subsidies that disadvantage low-risk insureds. Regulation should consider these
impacts when calibrating a capital standard.

Our methods can help insurers answer strategic questions related to geographic or class ex-
pansion. Regulation introduces a rigidity in rates that can discourage diversification and
lock-in subsidies between classes, and our analysis makes it clear where and how such rigidi-
ties will manifest themselves.

Finally, our model provides a novel way of looking at relative volatility or tail risk by class.
It shows that pooling behavior is very sensitively balanced, again emphasizing that a poorly
chosen regulatory standard can have an outsized impact on the market.

The rest of the paper is structured as follows. Section 2 describes the market participants
and their interactions. Section 3 recalls results giving the fair market value of insurance cash
flows for each class in a multiple-class insurance pool. Section 4 derives the market outcomes
that can occur. Section 5 gives some examples, and Section 6 concludes and suggests further
research.

1.5 Notation and Conventions
The terminology describing risk measures is standard, and follows Föllmer and Schied (2011).
We work on a standard probability space, Svindland (2009).

Total insured loss, or total risk, is described by a random variable 𝑋. 𝑋 reflects policy limits
but is not limited by insurer assets. 𝑋 = ∑𝑖 𝑋𝑖 describes the split of losses by class. 𝐹 , 𝑆,
𝑓 , and 𝑞 are the distribution, survival, density, and quantile function of 𝑋. 𝑋 ∧ 𝑎 denotes
min(𝑋, 𝑎) and 𝑋+ = max(𝑋, 0). 1𝐴 is the indicator function on a set 𝐴.

𝑆, 𝑃 , 𝑀 and 𝑄 refer to expected loss, premium, margin and equity as a function of insurer
assets, 𝑎. Premium equals loss plus margin; assets equal premium plus equity.

We use the actuarial sign convention: losses are positive and large positive values are bad.

2 Market Participants and Market Assumption
We work in a market with four participants: insureds, a regulator, insurance pools and
investors, as shown in Figure 1.
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We assume a one period model, with no expenses, no taxes, and a zero risk-free rate of
interest. These are standard simplifying assumptions, e.g. Ibragimov, Jaffee, and Walden
(2010).

At time 𝑡 = 0 insureds form into limited liability insurance pools. The policies issued to
pool participants aggregate to a total exposure 𝑋 = ∑𝑖 𝑋𝑖. The regulator capital measure
determines the amount of assets the pool needs to hold, 𝑎 = 𝑎(𝑋). The pool raises 𝑎 from
a combination of premium and by selling its 𝑡 = 1 residual value to investors to raise equity.
At 𝑡 = 1 claims become known and are paid. If losses 𝑋 ≤ 𝑎 all insureds are paid in full
and the residual value 𝑎 − 𝑋 is distributed to investors. If 𝑋 > 𝑎 the pool defaults and pays
insureds on an equal priority, pro rata basis. The investors receive nothing. In both cases
the pool is wound-up at 𝑡 = 1. There are no transactions between 0 and 1 and hence no
distinction between capital and assets.

Insureds Intermediary
Insurer

Regulator

Investor

Solvency
regulation Enforces

minimum
capital

Capital risk
measure

𝑎 = 𝑎(𝑋)

Total Premium
𝑃 = 𝜌(𝑋 ∧ 𝑎)

Equity capital
𝑄 = 𝑎 − 𝑃

Losses, 𝑋 ∧ 𝑎 Residual, (𝑎 − 𝑋)+

Figure 1: The four market actors and their interactions.

The investor prices with a DRM 𝜌 corresponding to a distortion function 𝑔. The insurer
purchases a quota share, with limit 𝑎, from the investors for a premium

𝜌𝑎(𝑋) ∶= 𝜌(𝑋 ∧ 𝑎(𝑋)). (1)
Thus the market pricing functional combines investor and regulator risk functionals in an
intricate and subtle way. All the effects we discuss are related to the properties of 𝜌𝑎. It is
easy to see that if both 𝑎 and 𝜌 are positive homogeneous, monotone, translation invariant,
law invariant, and comonotonic additive then 𝜌𝑎 will be too. But, critically, 𝜌𝑎 can fail to be
subadditive even when both 𝑎 and 𝜌 are subadditive. It is this fact that makes the problem
interesting and tricky.

Castagnoli, Maccheroni, and Marinacci (2004) shows DRMs always have a bid-ask spread.
We do not count the spread as an expense because insurance positions are always long.
Insurable interest laws make it impossible to short insurance.

We now specify the assumptions and behavior of each actor.

2.1 Insureds
There are two classes of insureds. Throughout, class 0 is a lower risk class and class 1 higher
risk. Risk is relative. Insureds within a class can be considered identical, with the same

7



insurance contract, the particulars of which are also irrelevant. As a result, adverse selection
is not a problem.

We are only concerned with class risk and not with individual insured characteristics within
the class. Correlations and dependencies between insureds determine class risk. It cannot be
discerned insured by insured. Florida homeowners insurance is a high volatility class. Low
limit, high frequency, and low severity US-style personal automobile is a low volatility class.
An individual Florida homeowners policy may have the same range of outcomes as a home
in France or Germany or Illinois. Still, the class risk of a portfolio of Florida homes will be
higher because of the possibility of hurricane events.

Aggregate losses are homogeneous within each class, meaning that losses from a proportion
𝑥𝑖 of class 𝑖 has distribution 𝑥𝑖𝑋𝑖 for fixed distributions 𝑋𝑖, 𝑖 = 1, 2. A homogeneous loss
model is a common approximation borrowed from finance, where 𝑥𝑖 is a position size and
𝑋𝑖 is a security price. It is used by Myers and Read (2001). 𝑋𝑖 can be considered as the
loss ratio for the class. Boonen, Tsanakas, and Wuthrich (2016) compares the homogeneous
assumption to a more realistic compound Poisson model, and Mildenhall (2017) shows that
a homogeneous assumption is not unrealistic for larger portfolios.

All market participants agree best-estimate subjective probabilities that underlying 𝑋𝑖. They
are recognized as ambiguous and uncertain. Commercial catastrophe models provide such a
pricing benchmark for the property catastrophe market.

Insureds purchase insurance because they face a compulsory insurance requirement. The
requirement exists for the protection of third parties. Insureds are immune to the failure
of their insurance, either because they are judgment-proof or because of a guaranty fund
mechanism. As a result, insureds are pure price buyers of any insurance that fulfills their
buying requirements. They are blind to the quality of the insurance they buy.

Individual risk aversion is not assumed in the model and is not necessary for the results.

2.2 Regulation
The solvency of insurance pools must regulated for compulsory insurance to be effective and
provide the desired third-party protection.

Regulation takes the form of a regulatory capital risk measure 𝑎. We assume that 𝑎 is law
invariant, positive homogeneous, monotone, and translation invariant. In most cases 𝑎 is
given by value at risk (VaR) or tail value at risk (TVaR). US NAIC RBC and Solvency II
are VaR-based; the Swiss Solvency Test is TVaR-based.

The regulatory risk measure is not assumed to be subadditive, and therefore may not be
coherent.

There is no other regulation in the market. Rate regulation is not needed because we assume
actors are well-informed. And there is no restriction on insurance pools, other than that they
meet the capital requirement. A pool can consist of a single risk, or one pool could contain
all risks, or any subset in-between. This flexibility means insureds always have the fall-back
of being written in a pool of one, which caps their premium.
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2.3 Insurer Intermediaries
Insurer intermediaries are transparent pass-through entities that provide compulsory insur-
ance meeting the regulator’s capital standard. They manage a pool of insureds and arrange
for the risk to be transferred to investors. They are like a “smart-contract”. They have no
employees or management, and so there are no principle-agent problems.

A pool refers to a group of insureds. There are two types of pool. A monoline pool contains
insureds from one class. A multiline pool contains insureds from more than one class.

An insurance pool is a limited liability insurance company. In theory, pools could contact di-
rectly with insurers and obtain unlimited cover. They will generally find this cost prohibitive
in our model, but it is an option.

Although insurers are incorporeal, they have a real economic impact because they enable
limited liability, which changes the cash flows paid to insureds. Limited liability is vital to
ambiguity averse investors: it truncates the tail, and it lowers the ambiguity of the losses
they assume.

We could argue that since investors ultimately bear all the risk they should be indifferent to
how it is packaged into pools. This is not correct. The pools alter the actual payments made
by investors because they impact the incidence of default. A multiline insurer structure will
default in different states than two monoline insurers.

Limited liability requires a legal framework to function; this is why the market uses insurer
legal entities rather than third-party pool managers who only act as brokers between insureds
and investors but assume no risk. The limited liability contract binds the participants
to equal priority in default. Marshall (2018) provides an illuminating discussion of the
importance of a legal entity to implement limited liability in the context of the California
Earthquake Authority.

The pool operates costlessly. Its only expense is the spread between subjective expected
losses and the investor pricing functional. Forming pools to minimize this spread is the topic
of the paper.

The insurance market is competitive. Since actors agree on probabilities, insureds only pay
the fair price for insurance, and neither pools nor insurers make a profit.

Providing a genuine motivation for the existence of insurance pools is a significant advantage
of our framework. Under perfect markets, there is no diversification benefit because the
pricing rule is linear, and so there is no need for a pool. Justifying insurers usually involves
an appeal to market access or transaction expenses, Ibragimov, Jaffee, and Walden (2010)
(especially footnote 9 and surrounding discussion).

2.4 Investor Risk Bearers
Investors bear insurance risk. Risk is transferred from the insured group to investors, rather
than being pooling between insureds.
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A competitive market produces prices that are modeled by a DRM. Kusuoka (2001) and
Föllmer and Schied (2011, chap. 4) show that a DRM is entirely characterized by a distortion
function. A distortion function is an increasing concave function 𝑔 ∶ [0, 1] → [0, 1] satisfying
𝑔(0) = 0 and 𝑔(1) = 1. The DRM 𝜌𝑔 associated with a distortion 𝑔 acts on a non-negative
random variable 𝑋 as

𝜌𝑔(𝑋) ∶= ∫
∞

0
𝑔(𝑆(𝑥))𝑑𝑥. (2)

When 𝜌 is combined with a regulatory capital function using eq. (6) we get the market
pricing functional

𝜌𝑎
𝑔(𝑋) = 𝜌𝑔(𝑋 ∧ 𝑎(𝑋)) = ∫

∞

0
𝑔(𝑆𝑋∧𝑎(𝑋)(𝑥))𝑑𝑥 = ∫

𝑎(𝑋)

0
𝑔(𝑆𝑋(𝑥))𝑑𝑥 (3)

since the survival functions 𝑆𝑋 and 𝑆𝑋∧𝑎 agree on [0, 𝑎), 𝑆𝑋∧𝑎(𝑥) = 0 for 𝑥 > 𝑎 and 𝑔(0) = 0.
We drop the subscript 𝑔 from the notation below since 𝑔 is fixed. Thus 𝜌𝑎

𝑔(𝑋) is the premium
charged for the insurance pool with total risk 𝑋.

2.5 Market Assumption Summary
Here is a summary of our insurance market assumptions.

1. Insureds are required to purchase compulsory insurance. They are pure price buyers.
2. Insurance losses are homogeneous within each pool.
3. Insurance must be purchased from a one period, limited liability insurance pool. Pools

can consist of one or more policies from either or both classes. There is no restriction
on the size or composition of pools. Single policy pools are allowed.

4. Insurance pools are required by regulation to capitalize according to a risk-based capital
formula. It is law invariant, positive homogeneous, monotonic, translation invariant,
but not necessarily subadditive. VaR is the archetype.

5. There is equal priority if the pool defaults because it has insufficient assets to pay its
obligations.

6. Investors provide equity to insurance pools by buying its residual value. Investors
price using a DRM 𝜌 associated with a distortion 𝑔. Equation (3) computes the pool
premium.

7. Insurance pools are costless to form and operate, other than the cost of risk transfer
to investors. There are no taxes.

8. All market participants agree on a set of subjective probabilities. Insurance pools are
transparent, and individuals know the fair market value of their insured claims. The
market is perfectly competitive and acts to remove any excess profits.

Under these assumptions, we now investigate what types of equilibrium insurance pools will
form. To do that, we start by deriving the fair market value of pool insurance to pool
participants.
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3 Market Pricing
This section describes what we call the natural allocation of pool premium, under the as-
sumptions set out in section 2 The natural allocation has a long history. Delbaen (2000)
shows it is a fair allocation in the sense of fuzzy games and has a directional derivative,
marginal interpretation when 𝜌 is differentiable. Equivalent formulations are derived several
other papers, including Venter, Major, and Kreps (2006) and Tsanakas and Barnett (2003).
It is consistent with Campi, Jouini, and Porte (2013), who show the rational price of 𝑋 in a
market with frictions must be anti-comonotonic with the state prices implied by 𝑋. In our
application the signs are reversed: 𝑔′(𝑆(𝑋)) and 𝑋 are comonotonic.

The natural allocation transfers perfect market pricing theory to a non-additive, imperfect
market setting. The perfect market results are derived in Sherris (2006) and Ibragimov,
Jaffee, and Walden (2010).

A perfect market pricing functional has the form EQ[⋅], where Q is a risk-adjusted measure.
The Radon Nikodym derivative of Q defines the state price density. Given losses by class
𝑋 = ∑𝑖 𝑋𝑖 supported by assets 𝑎, the problem is to allocate the total premium EQ(𝑋 ∧ 𝑎)
between classes. Specifying the payments each class receives in default is the critical step.

The most common approach to payments in default is called equal priority. It shares assets
in proportion to unlimited claims. Individual insurance contracts promise to pay 𝑋𝑖 to class
𝑖. In the aggregate, promised payments are split into realized payments and insurer default
as

𝑋 = 𝑋 ∧ 𝑎 + (𝑋 − 𝑎)+.
Multiplying both sides by 𝑋𝑖/𝑋 shows

𝑋𝑖 = 𝑋𝑖
𝑋 ∧ 𝑎

𝑋 + 𝑋𝑖
(𝑋 − 𝑎)+

𝑋
= (payments to class 𝑖) + (default to class 𝑖).

The payments to class 𝑖 under equal priority are defined as

𝑋𝑖(𝑎) ∶= 𝑋𝑖
𝑋 ∧ 𝑎

𝑋 =
⎧{
⎨{⎩

𝑋𝑖 𝑋 ≤ 𝑎
𝑎𝑋𝑖

𝑋 𝑋 > 𝑎.
(4)

Under equal priority class 𝑖 is paid in full when total losses are less than or equal to assets and
payments are pro-rated down by 𝑋𝑖/𝑋 in default states. These payments are contractual
and are legally specified. Note that ∑𝑖 𝑋𝑖(𝑎) = 𝑋 ∧ 𝑎.

Contractually specified payments to 𝑖 are a function of 𝑋𝑖 alone. These are the amounts
promised to 𝑖 by their insurance contract. 𝑋𝑖(𝑎) is the amount actually paid to 𝑖; it is a
function of losses for all classes, 𝑋1, … , 𝑋𝑛 as well as the total assets 𝑎 held by the insurer.
This distinction between promised and delivered payments is critical. It is responsible for
almost all the complexity of insurance pricing. In economics, the benefit of a good to the
buyer is usually independent of who else purchases it. With insurance risk pools that is not
the case: the value to one insured is almost always changed in some way if the pool takes on
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other risks. To completely specify the payments to 𝑖 it is necessary to know about possible
payments on all other contracts. These facts have profound implications for pooling, as we
shall see in the next section.

Sherris (2006) and Ibragimov, Jaffee, and Walden (2010) show that the fair premium for risk
𝑖 is simply EQ[𝑋𝑖(𝑎)]. It is an allocation of total premium EQ[𝑋 ∧ 𝑎] because expectations
are linear.

Under a DRM, the state price density Q becomes a function of the risk being priced; it is
the measure solving 𝜌(𝑋) = EQ[𝑋], subject to certain other conditions. But we can still use
the perfect market approach to allocate premium: the fair premium for 𝑖 is EQ[𝑋𝑖(𝑎)], even
though Q is no longer fixed. We call this the natural allocation premium. There are some
subtle points regarding whether Q is unique, but for DRMs they can be circumvented. The
details of our approach are given in Major and Mildenhall (2020). Here we give a summary,
describing explicit formulas to compute the natural allocation. Our market structure results
follow from the insights that these formulas provide. The formulas rely on three auxiliary
functions by class: 𝛼𝑖, 𝛽𝑖 and 𝜅𝑖.

The limited expected loss cost and premium for an insurance pool supported by assets 𝑎 are
given by

E[𝑋 ∧ 𝑎] = ∫
𝑎

0
𝑆(𝑥) 𝑑𝑥, (5)

𝜌(𝑋 ∧ 𝑎) = ∫
∞

0
𝑔(𝑆𝑋∧𝑎(𝑥)) 𝑑𝑥 = ∫

𝑎

0
𝑔(𝑆𝑋)(𝑥)𝑑𝑥. (6)

Using eq. (5) and the fundamental theorem of calculus we can interpret 𝑆(𝑎) as the loss
density in the layer at 𝑎, that is, the derivative of E[𝑋 ∧𝑎] with respect to assets 𝑎. Similarly,
by eq. (6), the premium density is 𝑔(𝑆(𝑎)). Premium and loss densities are the proportions
of the limit of a thin layer attaching at 𝑎 that are attributable to premium or loss. A thin
layer at 𝑎 means an insurance contract paying 1𝑋>𝑎, i.e., 1 when 𝑋 > 𝑎 and 0 otherwise.

Expected losses for class 𝑖 can be computed by conditioning on 𝑋 as

E[𝑋𝑖(𝑎)] = E[E[𝑋𝑖(𝑎) ∣ 𝑋]] = E[𝑋𝑖 ∣ 𝑋 ≤ 𝑎]𝐹(𝑎) + 𝑎E[𝑋𝑖/𝑋 ∣ 𝑋 > 𝑎]𝑆(𝑎). (7)

Because of its importance in allocating losses, define

𝛼𝑖(𝑎) ∶= E[𝑋𝑖/𝑋 ∣ 𝑋 > 𝑎]. (8)

The value 𝛼𝑖(𝑥) is the expected proportion of recoveries by class 𝑖 in a thin layer attaching
at 𝑥. Since total assets available to pay losses always 100 percent of the layer and the chance
the layer attaches is 𝑆(𝑥), it is intuitively clear 𝛼𝑖(𝑥)𝑆(𝑥) is the derivative of E[𝑋𝑖(𝑎)] with
respect to 𝑥. This is, in fact, the case by Major and Mildenhall (2020), Proposition 1. Thus

E[𝑋𝑖(𝑎)] = ∫
𝑎

0
𝛼𝑖(𝑥)𝑆(𝑥)𝑑𝑥 (9)
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and the class 𝑖 loss density at 𝑥 is 𝛼𝑖(𝑥)𝑆(𝑥). Equation (9) gives a direct analog to eq. (5)
for class 𝑖 losses. It is remarkable, because it converts 𝑋 = ∑𝑖 𝑋𝑖, a convolution of random
variables, into a simple sum.

Total premium under 𝜌 is given by eq. (6). We now compute the natural allocation premium
and premium density for each class. Using integration by parts the price of an unlimited
cover on 𝑋 is

𝜌(𝑋) = ∫
∞

0
𝑔(𝑆(𝑥)) 𝑑𝑥 = ∫

∞

0
𝑥𝑔′(𝑆(𝑥))𝑓(𝑥) 𝑑𝑥 = E[𝑋𝑔′(𝑆(𝑋)))]. (10)

It is important that this integral is over all 𝑥 ≥ 0 so the 𝑥𝑔(𝑆(𝑥))|𝑎0 term disappears. This
shows that 𝑔′(𝑆(𝑋)) is the Radon Nikodym derivative of Q discussed above. Thus the natural
allocation premium is E[𝑋𝑖𝑔′(𝑆(𝑋))]. It is denoted 𝜌𝑋(𝑋𝑖) to emphasize its dependence on
𝑋. The choice 𝑔′(𝑆(𝑋)) is economically meaningful because it weights the largest outcomes
of 𝑋 the most, which is appropriate from a social, regulatory and investor perspective. Since
DRMs are comonotonic additive the same density can be used for 𝜌(𝑋 ∧ 𝑎). This will not
be true for non-comonotonic additive risk measures, Shapiro (2012).

Next, we define the premium risk-adjusted analog of the 𝛼𝑖 as

𝛽𝑖(𝑎) ∶= EQ[𝑋𝑖/𝑋 ∣ 𝑋 > 𝑎]. (11)

𝛽𝑖(𝑥) is the value of the recoveries paid to class 𝑖 by a thin layer at 𝑎. By the properties of
conditional expectations, we have

𝛽𝑖(𝑎) = E[(𝑋𝑖/𝑋)𝑍 ∣ 𝑋 > 𝑎]
E[𝑍 ∣ 𝑋 > 𝑎] . (12)

The denominator equals Q(𝑋 > 𝑎)/P(𝑋 > 𝑎). (Remember that while EQ[𝑋] = E[𝑋𝑍], for
conditional expectations EQ[𝑋 ∣ ℱ] = E[𝑋𝑍 ∣ ℱ]/E[𝑍 ∣ ℱ], see Föllmer and Schied (2011),
Proposition A.12.)

To compute 𝛼𝑖 and 𝛽𝑖 we use the third function

𝜅𝑖(𝑥) ∶= E[𝑋𝑖 ∣ 𝑋 = 𝑥], (13)

the conditional expectation of loss by class, given the total loss. It is an important fact that
the risk adjusted version of 𝜅 is unchanged because DRMs are law invariant.

Major and Mildenhall (2020) Theorem 2 now gives the following, essentially unique expres-
sion for the natural allocation of eq. (6)

𝜌𝑋∧𝑎(𝑋𝑖(𝑎)) = EQ[𝑋𝑖𝑔′(𝑆(𝑋)) ∣ 𝑋 ≤ 𝑎](1 − 𝑔(𝑆(𝑎)))+
𝑎EQ[(𝑋𝑖/𝑋)𝑔′(𝑆(𝑋)) ∣ 𝑋 > 𝑎]𝑔(𝑆(𝑎)). (14)

Moreover, we get a premium analog of eq. (9)

𝜌𝑋∧𝑎(𝑋𝑖(𝑎)) = ∫
𝑎

0
𝛽𝑖(𝑥)𝑔(𝑆(𝑥)) 𝑑𝑥. (15)
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To recap: the premium formulas eqs. (14) and (15) have been derived assuming only that
capital is provided at a cost 𝑔 and there is equal priority by class. Both formulas are
computationally tractable. There is no need to assume the 𝑋𝑖 are independent. The formulas
produce an entirely general, canonical determination of premium in the presence of shared
costly capital. They extend Grundl and Schmeiser (2007), who pointed out that with an
additive pricing functional there is no need to allocate capital to price, to the situation of a
non-additive DRM pricing functional.

4 Market Outcomes
We now apply the general theory developed in section 3 to the specific questions introduced
in section 2. First we look at some relevant implications of the formalism developed so far.

4.1 Properties of the Natural Allocation
The results in this subsection only assume we are pricing with a DRM and have equal priority
in default. They do not assume a homogeneous loss model. Nor do they assume the risk
classes are independent.

The margin in premium is defined as the difference between premium and expected loss.
Margin is the cost of bearing risk. It is a measure of the spread of investor probabilities over
best-estimate subjective probabilities. Equations (5), (6), (9) and (15) give the total margin
and its natural allocation by class

𝑀(𝑎) ∶ = ∫
𝑎

0
𝑔(𝑆(𝑡)) − 𝑆(𝑡) 𝑑𝑡,

𝑀𝑖(𝑎) ∶ = ∫
𝑎

0
𝛽𝑖(𝑡)𝑔(𝑆(𝑡)) − 𝛼𝑖(𝑡)𝑆(𝑡) 𝑑𝑡. (16)

Differentiating recovers the corresponding margin densities

𝑀 ′(𝑎) = 𝑔(𝑆(𝑎)) − 𝑆(𝑎); 𝑀 ′
𝑖 (𝑎) = 𝛽𝑖(𝑡)𝑔(𝑆(𝑡)) − 𝛼𝑖(𝑡)𝑆(𝑡). (17)

In the special case of independent 𝑋𝑖, the total and class margins are always non-negative.
Moreover, the natural allocation premium is always less than the stand-alone premium,
meaning it satisfies the no-undercut condition of Denault (2001). Thus

E[𝑋𝑖] ≤ 𝜌𝑋(𝑋𝑖) ≤ 𝜌(𝑋𝑖), (18)

see Major and Mildenhall (2020) Proposition 2.

Returning to the general case, we show how eq. (17) gives useful insight into class margins.
Since distortions are increasing and concave, 𝑔(𝑆(𝑎)) ≥ 𝑆(𝑎) for all 𝑎 ≥ 0. Thus all asset
layers contain a non-negative total margin. It is a different situation by class where

𝑀 ′
𝑖 (𝑎) ≥ 0 ⟺ 𝛽𝑖(𝑎)𝑔(𝑆(𝑎)) − 𝛼𝑖(𝑎)𝑆(𝑎) ≥ 0 ⟺ 𝛽𝑖(𝑎)

𝛼𝑖(𝑎) ≥ 𝑆(𝑎)
𝑔(𝑆(𝑎)),
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so the class layer margin density is positive when 𝛽𝑖/𝛼𝑖 is greater than the average layer
loss ratio 𝑠/𝑔(𝑠). Since the loss ratio is ≤ 1 there must be a positive layer margin whenever
𝛽𝑖(𝑎)/𝛼𝑖(𝑎) > 1. But when 𝛽𝑖(𝑎)/𝛼𝑖(𝑎) < 1 it is possible the class has a negative margin.
How can that occur depends on the relative thickness of the tails of 𝑋𝑖.

Defining an absolute notion of thin or thick tailed distribution is a very subtle matter.
Embrechts, Klüppelberg, and Mikosch (1997) offer several different definitions. Fortunately,
we are only concerned with relative tail thickness. We say that 𝑋0 is relatively thin
tailed or has relatively thinner tails than 𝑋1 if 𝜅0(𝑥) is bounded as a function of 𝑥.
Log-concave densities are all relatively thinner tailed than exponential and sub-exponential
distributions. However, since ∑𝑖 𝜅𝑖(𝑥) = 𝑥 it is impossible for both 𝑋0 and 𝑋1 to be
relatively thinner tailed. For a multivariate normal distribution, which has a log-concave
density, the 𝜅𝑖 functions are all linear, showing it is not necessary that either class be
relatively thin compared to the other. However, such balance is unusual.

Differentiating 𝛼𝑖(𝑥)𝑆(𝑥) = E[(𝑋𝑖/𝑋)1𝑋>𝑡] with respect to 𝑥 and re-arranging gives

𝛼′
𝑖(𝑥) = (𝛼𝑖(𝑥) − 𝜅𝑖(𝑥)

𝑥 ) 𝑓(𝑥)
𝑆(𝑥). (19)

The results for 𝛽𝑖 are analogous. The term ℎ(𝑥) ∶= 𝑓(𝑥)/𝑆(𝑥) is called the hazard rate
function. For thick tailed distributions it is an eventually decreasing function, but remains
strictly positive. For thin tailed distributions it is an eventually increasing function. It is
constant for the exponential distribution.

Equation (19) implies that 𝛼′
𝑖(𝑥) < 0 if 𝜅𝑖(𝑥)/𝑥 is decreasing (for example, if 𝜅𝑖(𝑥) is

bounded) because 𝛼𝑖(𝑥) is the probability weighted integral of 𝜅𝑖(𝑡)/𝑡 over 𝑡 > 𝑥, and so
𝛼𝑖(𝑥) < 𝜅𝑖(𝑥)/𝑥. Conversely if 𝜅𝑖(𝑥)/𝑥 is increasing 𝛼′(𝑖) will be positive.

In particular, if 𝜅𝑖(𝑥) is bounded or if 𝜅𝑖(𝑥)/𝑥 is decreasing then 𝛼𝑖(𝑥) will decrease with
𝑥. Therefore 𝛽𝑖(𝑥) < 𝛼𝑖(𝑥) because the risk adjustment defining 𝛽𝑖 weights tail events more.
This shows it is possible that 𝛽𝑖(𝑥)/𝛼𝑖(𝑥) < 𝑔(𝑆(𝑥))/𝑆(𝑥).
Usually 𝛼𝑖(𝑥) eventually becomes constant or regularly varying like 1/𝑥 and so 𝛽𝑖(𝑥)/𝛼𝑖(𝑥)
will increase with 𝑥. At the same time, the layer loss ratio decreases with 𝑥 because 𝑔 is
concave. Thus the thinner class will eventually get a positive margin density. Whether or
not the thinner class has a positive total margin depends on the particulars of the classes and
the level of assets 𝑎. As 𝑎 → ∞ the margin becomes positive because the natural allocation
has the no-undercut property, eq. (18). A negative total margin it is more likely for less
well capitalized insurers, which makes sense because they have a lower overall dollar cost
of capital, and less expensive insurance pricing, because the loss ratio will be higher. We
conclude that a relatively thin tailed class can have a negative margin, especially for weak
capital standards giving low asset levels.

Since ∑𝑖 𝜅𝑖(𝑥) = 𝑥 it follows that ∑𝑖 𝜅′
𝑖(𝑥) = 1. It is typical for the class with the thickest

tail to behave like 𝜅𝑖(𝑥) ≈ 𝑡 − ∑𝑗≠𝑖 E[𝑋𝑗] for large 𝑡. In fact, this can be taken as a
definition of thickest tail. Then 𝜅′

𝑖(𝑥) = 1 and the remaining 𝜅𝑗(𝑥) ≈ E[𝑋𝑗] are almost
constant. In that case 𝜅𝑗(𝑥)/𝑥 > 𝛼𝑗(𝑥) and so 𝛼′

𝑗(𝑥) < 0 and 𝛼′
𝑖(𝑥) > 0; since ∑𝑖 𝛼𝑖(𝑥) = 1,
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∑𝑖 𝛼′
𝑖(𝑥) = 0. It is only possible for two classes to have 𝜅𝑖(𝑥) = O(𝑥) when their tails are

balanced. Two compound Poisson distributions with the same severity provide an example.

Classes where 𝛼𝑖(𝑥) is ultimately increasing with 𝑥 always have a positive margin. Increasing
𝛼𝑖 implies 𝛽𝑖(𝑥)/𝛼𝑖(𝑥) > 1 > 𝑔(𝑆(𝑥))/𝑆(𝑥) because the risk adjustment puts more weight
on 𝑋𝑖/𝑋 for larger 𝑋 and the risk adjustment 𝑔′(𝑆(𝑋)) is comonotonic with 𝑋. Note that
𝛼𝑖 must increase at least one 𝑖. The functions 𝜅𝑖 and 𝛼𝑖 are not necessarily monotone; in
fact 𝜅𝑖 can exhibit quite bizarre behavior.

This analysis shows that a relatively thin tailed class loses from pooling. By pooling it
increases the assets available to pay losses, but in default states it will capture less than
its unlimited expected loss proportion of the additional assets it contributes. Equal priority
acts to transfer wealth away from the thiner class to the thicker one. Put another way,
default is likely to be caused by a large loss in the thicker tailed line, which will then claim a
disproportionate share of assets in default states. As a result the thinner class must be paid
a margin, through negative 𝑀𝑖, to compensate for its losses in default states.

Next, we consider the behavior of 𝛼 and 𝛽 for losses below the expected value. Realistic,
balanced insurance portfolios have skewed loss distributions with a very low probability of
having an extremely good year and a small loss outcome. Thus for 𝑥 small relative to
expected loss it is usual that 𝑓(𝑥) ≈ 0 and 𝑆(𝑥) ≈ 1. Equation (19) then shows that
𝛼′

𝑖(𝑥) = 0. Similarly 𝛽′
𝑖(𝑥) = 0.

Finally note that when 𝑆(𝑥) is very close to 1 the total margin 𝑔(𝑆(𝑥)) − 𝑆(𝑥) will be very
close to zero. Thus the sum of class margins will be close to zero. Therefore, at small
losses either every class has a zero margin or some are positive and some negative. As we
have seen, a relatively thin tailed class will have a negative margin and the thickest tailed
class—determined by ultimate behavior of 𝜅𝑖(𝑥)—will have a positive margin.

To conclude, we have shown the following behaviors.

1. In total, the margin and the margin density are always non-negative, for all layers and
asset levels.

2. For full coverage, 𝑎 = ∞, the natural allocation premium is always less than the
monoline (stand-alone) premium and contains a non-negative margin.

3. As 𝑎 → ∞ all classes have a non-negative overall margin.
4. A relatively thinner tailed class will have a negative margin and margin density for

low asset layers. It can have a negative overall margin and is more likely to do so with
cheaper insurance pricing or a weaker capital standard.

5. A class with 𝜅𝑖(𝑥) = O(𝑥) will always have a non-negative margin and margin density
for all layers.

Figure 2 illustrates the theory we have developed. We refer to the charts as (𝑟, 𝑐) for row
𝑟 = 1, 2, 3, 4 and column 𝑐 = 1, 2, 3, starting at the top left. The horizontal axis shows the
asset level in all charts except (3, 3) and (4, 3), where is shows probability. Blue represents
the thin tailed class 𝑋0, orange thick tailed 𝑋1, and green total 𝑋. Dashed lines represent
losses and solid lines premium (or risk adjusted) when both are shown on the same plot.
Here is the key.
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• (1, 1) shows density for 𝑋0, 𝑋1 and 𝑋 = 𝑋0 + 𝑋1; the two classes are independent.
𝑋0 is a thin tailed gamma distribution with a mean of 150 and coefficient of variation
of 0.1, which approximates US personal auto. 𝑋1 is lognormal with a mean of 50 and
𝜎 = 1.25, which is quite extreme. The investor distortion uses a proportional hazard
transform 𝑔(𝑠) = 𝑠0.5, resulting in moderately expensive insurance.

• (1, 2): log density; comparing tail thickness.
• (1, 3): the bivariate log-density. This plot illustrates where (𝑋0, 𝑋1) lives. The diago-

nal lines show 𝑋 = 𝑘 for different 𝑘. These show that large values of 𝑋 correspond to
large values of 𝑋1, with 𝑋0 about average.

• (2, 1): the form of 𝜅𝑖 is clear from looking at (1, 3). 𝜅1 has a local maximum around
𝑥 = 160. 𝜅2 is monotonically increasing.

• (2, 2): The 𝛼𝑖 functions. For small 𝑥 the expected proportion of losses less than the
expected 75/25 mix by Jensen’s inequality. As 𝑥 increases 𝑋1 dominates. The two
functions sum to 1.

• (2, 3): The solid lines are 𝛽𝑖 and the dashed lines 𝛼𝑖 from (2, 2). Since 𝛼1 decreases
𝛽1(𝑥) ≤ 𝛼1(𝑥). This leads to class 0 having a negative margin in low asset layers.
Class 1 is the opposite.

• (3, 1): illustrates premium and margin determination by asset layer for class 0 using
eq. (9) and eq. (15). For low asset layers 𝛼1(𝑥)𝑆(𝑥) > 𝛽1(𝑥)𝑔(𝑆(𝑥)) (dashed above
solid) corresponding to a negative margin density. Beyond about 𝑥 = 100 the lines
reverse and the margin density is positive.

• (4, 1): shows the same thing for class 1. Since 𝛼1 is increasing, 𝛽1(𝑥) > 𝛼1(𝑥) for all
𝑥 and so all layers get a positive margin. The solid line 𝛽𝑔𝑆 is above the dashed 𝛼𝑆
line.

• (3, 2): shows the layer margin densities. For low asset layers premium is fully funded
by loss with zero overall margin. The thick class pays a positive margin and the thin
class a negative one, reflecting the benefit the thick class receives from pooling in low
layers. The overall margin is always non-negative. Beyond 𝑥 = 100 the thin class
margin is also positive.

• (4, 2): the cumulative margin in premium by asset level. Total margin is zero in low
dollar-swapping layers and then increases. It is always non-negative. The lines in this
plot are the integrals from 0 to 𝑎 of those in (3, 2).

• (3, 3): shows stand-alone loss (1 − 𝑆(𝑥), 𝑥) = (𝑝, 𝑞(𝑝)) (dashed) and premium (1 −
𝑔(𝑆(𝑥)), 𝑥) = (𝑝, 𝑞(1 − 𝑔−1(1 − 𝑝)) (solid, shifted left) for each class and total. The
margin is the shaded area between the two. Each set of three lines (solid or dashed)
does not add up vertically because of diversification. The same distortion 𝑔 is applied
to each line.

• (4, 3): shows the natural allocation of loss and premium to each class. The total
(green) is the same as (3, 3). For each line, dashed shows (𝑝, E[𝑋𝑖 ∣ 𝑋 = 𝑞(𝑝)]),
i.e., the expected recovery conditioned on total losses 𝑋 = 𝑞(𝑝), and solid shows
(𝑝, E[𝑋𝑖 ∣ 𝑋 = 𝑞(1 − 𝑔−1(1 − 𝑝))]), i.e., the natural premium allocation. Here the
solid and dashed lines do add up vertically: they are allocations of the total. Looking
vertically above 𝑝 the shaded areas show how the total margin at that loss level is
allocated between lines. Class 0 mostly consumes assets at low layers, and the blue
area is thicker for small 𝑝, corresponding to smaller total losses. For 𝑝 close to 1, large
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total losses, margin is dominated by class 1 and in fact class 0 gets a slight credit
(dashed above solid), reflecting the fact that it is partially providing capacity. The
change in shape of the shaded margin area for class 0 is particularly evident: since
class 0 is hurt by pooling, it pays a lower overall margin.

Plots (3, 3) and (4, 3) explain why the thick class pays relatively more margin: its margin
shape does not change when it is pooled with class 0. In (3, 3) the green shaded area
is essentially an upwards shift of the orange and the orange areas in (3, 3) and (3, 4) are
essentially the same. This means that adding class 0 has virtually no impact on the shape
of class 1; it is like adding a constant. This can also be seen in (4, 3) where the blue region
is almost a straight line.

4.2 Implications for Market Structure
Throughout this section the eight assumptions from section 2.5 hold. In addition, we assume
there are two classes of insured, with independent aggregate loss distributions 𝑋0 and 𝑋1.
𝑋0 will usually be the less risky of the two. The regulatory capital standard is given by
𝑝-VaR for some 𝑝 close to 1. VaR is the most commonly used regulatory capital standard.
It underlies Solvency II.

A homogeneous loss model combined with positive homogeneous risk-based capital and in-
vestor pricing formula functionals implies the economics of any pool only depend on its mix
of business and not on its size. Premium, loss, risk, and capital all scale with volume; loss
ratio and return on equity are size-independent. This is an important simplification.

Since monoline pools within a class all have the same mix, their economics are independent
of size. Therefore we can merge all the monoline pools by class and assume that the merged
pool includes all the risks not in multiline pools. As a result, our homogeneous loss model
is the perfect laboratory in which to study the pooling problem because it puts all the focus
on the composition of pools.

In almost all situations there can only be one multiline pool. We shall show below that the
natural premium rate for each risk in a multiline pool varies with the proportion of each
class in the pool. Two pools with different proportions of each class have different rates by
class. As a result, each class would have a definite preference for one of the two pools, and
so they could not be in equilibrium. When the proportions are the same, the two pools can
be combined by homogeneity. Therefore we can assume there is only one multiline pool.

Combining these two observations, we see the market structure is determined by a single
decision variable: the mix by class in the multiline pool. Specifically, let 𝑡, 0 ≤ 𝑡 ≤ 1, denote
the proportion of class 1 risk in the pool. By homogeneity, losses from a proportion 𝑡 of class
𝑖 are 𝑡𝑋𝑖. Therefore losses from a pool with a proportion 𝑡 of class 1 risks and 1 − 𝑡 of class
0 are given by

𝑋(𝑡) ∶= (1 − 𝑡)𝑋0 + 𝑡𝑋1. (20)
The notation is chosen so that 𝑋(0) = 𝑋0 and 𝑋(1) = 𝑋1.

Different pools provide different covers. Although the premiums vary by class for pools
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Figure 2: A thin tailed tailed class combined with a thick tailed line. See text for a key to
the graphs.
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with different mixes, all the premiums are fair values. Premium differences reflect different
payments each pool will make in default states. Recall that insureds select between pools
solely on the basis of price; they do not consider the payment differences.

If a multiline pool has 𝑡 ≤ 0.5 then it can be scaled up to include all the class 0. If 𝑡 ≥ 0.5 it
can scale to include all the class 1 risks. In both cases, homogeneity implies the economics
are independent of pool scale. Thus there are just three structures that can occur:

1. 𝑡 = 0.5: complete pooling in a single multiline pool;
2. 𝑡 = 0, 1: no pooling with two disjoint monoline pools; or
3. 0 < 𝑡 < 1: 𝑡 ≠ 0.5: partial pooling with a multiline pool and a monoline pool.

In structure 3, all of class 0 is pooled for 0 < 𝑡 < 0.5 and all of class 1 for 0.5 < 𝑡 < 1.
The remaining risks are monoline. Note that 𝑡 = 0 and 𝑡 = 1 define the same outcome.
Outcomes are topologically a circle.

Our central question is to determine conditions under which each structure occurs. And
when structure 3 occurs, what determines the proportions, whether an individual is pooled
or monoline, and how is the diversification benefit distributed?

Let 𝑃(𝑡) ∶= 𝜌(𝑋(𝑡) ∧ 𝑎(𝑋(𝑡))) be the premium for the pool 𝑋(𝑡). We denote the natural
premium allocation and corresponding premium rates by

𝑃0(𝑡) ∶= 𝜌𝑋(𝑡)∧𝑎(𝑋(𝑡))((1 − 𝑡)𝑋0), 𝑃1(𝑡) ∶= 𝜌𝑋(𝑡)∧𝑎(𝑋(𝑡))(𝑡𝑋); (21)

𝑅0(𝑡) ∶= 𝑃0(𝑡)
1 − 𝑡 , 𝑅1(𝑡) ∶= 𝑃1(𝑡)

𝑡 . (22)

There is no variable for the total pool rate because we have normalized the pool to contain
one weighted policy, meaning its rate equals its premium. Since 𝑃(𝑡) = 𝑃0(𝑡)+𝑃1𝑡) we have
𝑃(𝑡) = (1 − 𝑡)𝑅0(𝑡) + 𝑡𝑅1(𝑡). Note that 𝑃(0) = 𝑃0(0) = 𝑅0(0): all three expressions equal
the monoline premium for all of class 0. Similarly 𝑃(1) = 𝑃1(1) = 𝑅1(1).
The most any insured will pay is their monoline premium, since they are free to form a
single-policy monoline pool. Again, by homogeneity, the premium rate for a single policy
pool is independent of its size.

Provided both monoline premiums are finite, 𝑡 ↦ 𝑃(𝑡) will be continuous; in fact, it is (gen-
erally) differentiable. Suppose the class distributions are continuous, so there are no issues
with probability masses and the quantile functions are unique. Let 𝑆𝑡, 𝑓𝑡 denote the survival
and density of 𝑋(𝑡) and use the shorthand 𝑎(𝑡) = 𝑎(𝑋(𝑡)). Then by eq. (6), combined with
expressions for the derivatives of the survival and quantile function of homogeneous variables
derived in Tasche (2001)1, and the chain rule for differentiation, we get and expression for

1Given variables 𝑋1, … , 𝑋𝑛, define a weighted homogeneous portfolio by 𝑋(w) = ∑𝑖 𝑤𝑖𝑋𝑖, w =
(𝑤1, … , 𝑤𝑛). Let 𝑆w(𝑥) = Pr(𝑋(w) > 𝑥) be the survival function, 𝑞w(𝑝) be the 𝑝 quantile function, and
𝑓w be the density of 𝑋(w). Tasche obtains the following expressions.

The derivative of the survival function is

𝜕𝑆w
𝜕𝑤𝑖

(𝑥) = E[𝑋𝑖1{𝑋(w)=𝑥}] = E[𝑋𝑖 ∣ 𝑋(w) = 𝑥]𝑓w(𝑥) = 𝜅𝑖(𝑥)
𝑤𝑖

𝑓w(𝑥). (23)
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the derivative of pool premium with respect to pool mix

𝑑𝑃
𝑑𝑡 = 𝑑

𝑑𝑡 ∫
𝑎(𝑡)

0
𝑔(𝑆𝑡(𝑥)) 𝑑𝑥

= ∫
𝑎(𝑡)

0
𝑔′(𝑆𝑡(𝑥))𝑑𝑆𝑡

𝑑𝑡 (𝑥) 𝑑𝑥 + 𝑔(𝑆𝑡(𝑎(𝑡)))𝑑𝑎
𝑑𝑡

+ = ∫
𝑎(𝑡)

0
(𝜅1(𝑥)

𝑡 − 𝜅0(𝑥)
1 − 𝑡 ) 𝑔′(𝑆𝑡(𝑥)))𝑓𝑡(𝑥) 𝑑𝑥 + 𝑔(𝑆𝑡(𝑎(𝑡))) (𝜅1(𝑎(𝑡))

𝑡 − 𝜅0(𝑎(𝑡))
1 − 𝑡 )

= EQ𝑡
[𝑋1 − 𝑋0 ∣ 𝑋𝑡 ≤ 𝑎(𝑡)](1 − 𝑔(𝑆𝑡(𝑎(𝑡))) + E[𝑋1 − 𝑋0 ∣ 𝑋𝑡 = 𝑎(𝑡)]𝑔(𝑆𝑡(𝑎(𝑡)))

where Q𝑡 is the measure with density 𝑔′(𝑆𝑡(𝑋𝑡)). The second expectation in the last expres-
sion is the same its EQ𝑡

version because DRMs are law invariant and therefore cannot change
conditional probabilities within sets of the form {𝑋𝑡 = 𝑥}. This shows that the slope of 𝑃
is controlled by 𝜅𝑖.

By eq. (6), for 𝑖 = 0, 1

𝑅𝑖(𝑡) = EQ𝑡
[𝑋𝑖 ∣ 𝑋𝑡 ≤ 𝑎(𝑡)](1 − 𝑔(𝑆𝑡(𝑎(𝑡))) + 𝑎(𝑡)E[𝑋𝑖/𝑋(𝑡) ∣ 𝑋𝑡 > 𝑎(𝑡)]𝑔(𝑆𝑡(𝑎(𝑡)))

and therefore

(𝑅1(𝑡) − 𝑅0(𝑡)) − 𝑑𝑃
𝑑𝑡 = 𝑎(𝑡)(EQ𝑡

[(𝑋1 − 𝑋0)/𝑋(𝑡) ∣ 𝑋𝑡 > 𝑎(𝑡)]−
E[(𝑋1 − 𝑋0)/𝑋(𝑡) ∣ 𝑋𝑡 = 𝑎(𝑡)])𝑔(𝑆𝑡(𝑎(𝑡))). (26)

Thus the slope of 𝑃 is controlled by the difference between the conditional expectations on
the right. Up to scaling, these are the difference between 𝛽 and 𝜅. The difference only
appears in default states. As the capital standard gets stronger it disappears. It is also
less material for thin tailed distributions. The result of conditioning on {𝑋𝑡 > 𝑎(𝑡)} and
{𝑋𝑡 = 𝑎(𝑡)} will be more similar for a log-concave density than for thick tailed distributions.
It also provides the missing link in our justification that there is only one multiline pool
since 𝑑𝑃/𝑑𝑡 ≠ 0 in most cases.

The derivative of 𝑞w(𝑝) = VaR𝑝(𝑋(w)) with respect to 𝑤𝑖 is

𝜕𝑞w(𝑝)
𝜕𝑤𝑖

= E [𝑋𝑖 ∣ 𝑋(w) = 𝑞w(𝑝)] = 𝜅𝑖(𝑥)
𝑤𝑖

. (24)

For reference, the derivative of tail value at risk is

𝜕TVaR𝑝(𝑋(w))
𝜕𝑤𝑖

= E[𝑋𝑖 ∣ 𝑋(w) > 𝑞w(𝑝)] = 𝛼𝑖(𝑞w(𝑝))
𝑤𝑖

(25)

In our application, 𝑋(𝑡) = (1 − 𝑡)𝑋0 + 𝑡𝑋1, and so

𝑑𝑆𝑡
𝑑𝑡 (𝑥) = − 𝜕𝑆𝑡

𝜕𝑤0
(𝑥) + 𝜕𝑆𝑡

𝜕𝑤1
(𝑥) = (𝜅1(𝑥)

𝑡 − 𝜅0(𝑥)
1 − 𝑡 ) 𝑓𝑡(𝑥)

and similarly for the quantile (VaR) derivative.
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Consider adding a small amount of class 0 to a monoline portfolio of class 1. What are bounds
on the multiline rates for each class? By definition 𝑅1(1) = 𝑃1(1). What can we say about
𝑅0(𝑡), 𝑅1(𝑡) as 𝑡 → 1 from below? Since the distributions are continuous 𝑆𝑡(𝑎(𝑡)) = 1 − 𝑝
for all 𝑡. Therefore, from eq. (6) and eq. (14)

𝑅0(𝑡) = EQ𝑡
[𝑋0|𝑋(𝑡) ≤ 𝑎](1 − 𝑔(1 − 𝑝)) + (𝑎/(1 − 𝑡))𝛽0(𝑎)𝑔(1 − 𝑝) (27)

𝑅1(𝑡) = EQ𝑡
[𝑋1|𝑋(𝑡) ≤ 𝑎](1 − 𝑔(1 − 𝑝)) + (𝑎/𝑡)𝛽1(𝑎)𝑔(1 − 𝑝). (28)

Suppose that class 1 is relatively thin tailed.

First consider 𝑡 close to 1, meaning class 0 has a small volume. When class 0 is added in small
quantities it acts like adding a constant to the loss. It will increase assets by (1−𝑡)E[𝑋0] and
will have a de minimus impact on total losses. In non-default states everything is fair. But
in default states, which will be driven by a large class 1 loss, class 1 will take the lion’s share
of the additional assets under equal priority. There is no offsetting compensation to class
0 because it is relatively thin tailed: it never has an out-sized loss. Thus class 0 effectively
subsidizes class 1 by providing more asset for class 1 in default. To compensate for this,
class 1 must pay a higher premium: it is now better off than it was in a monoline, 𝑡 = 1
pool. Thus 𝑅1(𝑡) > 𝑅1(0) for 𝑡 close to 1. The amount by which the pooled rate exceeds the
monoline rate will increase as the capital standard becomes weaker because default states
become more important.

On the other hand for class 0 we can see that the economic value of recoveries will be close to
E[𝑋0]. It will certainly be less than E[𝑋0𝑔′(𝑆(𝑋))], which does not allow for default. Thus

𝑅0(𝑡) ≤ E[𝑋0𝑔′(𝑆(𝑋))]
= E[𝑋0]E[𝑔′(𝑆(𝑋))] + Cov(𝑋0, 𝑔′(𝑆(𝑋)))
= E[𝑋0] + Cov(𝑋0, 𝑔′(𝑆(𝑋(𝑡)))),

and Cov(𝑋0, 𝑔′(𝑆(𝑋(𝑡))) will be close to zero for 𝑡 close to 1 and can in fact be negative
in certain situations. Conclusion 4 in section 4.1 implies 𝑅0(𝑡) < E[𝑋0] (actually < E[𝑋0 ∧
𝑎(0)]). If class 0 is not relatively thinner tailed then 𝑅0(𝑡) ≥ E[𝑋0] by conclusion 5.

Second, consider the opposite case: adding a small amount of a more volatile portfolio to a
less volatile one. This corresponds to 𝑡 close to 0. This situation is different to the previous
one because if 𝑋1 has thick enough tails then it can still dominate large outcomes even
when it has a very small expected loss. The conclusions in section 4.1 show the relationship
between 𝑅0(𝑡) and 𝑃(0) is indeterminate; it depends on the relative tail thicknesses. When
class 1 is not extremely thick tailed 𝑅0(𝑡) will exceed 𝑃(0) for small 𝑔, but the effect is much
less pronounced than the situation at 𝑡 = 1.

We conclude that if class 0 is relatively thinner tailed than class 1 then 𝑅1(𝑡) > 𝑃(1) for 𝑡 in
an interval [𝑡∗

1, 1). When class 0 is not relatively thinner then 𝑅1(𝑡) > E[𝑋1] and there can
exist 𝑡∗

1 < 𝑡∗∗
1 so that 𝑅1(𝑡) ≥ 𝑃(1) for 𝑡 ∈ [𝑡∗

1, 𝑡∗∗
1 ] but E[𝑋1] ≤ 𝑅1(𝑡) ≤ 𝑃(1) for 𝑡 ∈ [𝑡∗∗

1 , 1).
Figure 3 illustrates these variables for a typical example. 𝑋0 and 𝑋1 are independent gamma
variables with E[𝑋𝑖] = 100 and coefficient of variation 0.25 and 0.30 respectively. Both lines
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are thin tailed and have log concave densities; neither is relatively thinner than the other.
To show various features more clearly, the model uses a weak 0.90 VaR capital standard and
an expensive proportional hazard 𝜌 with distortion 𝑔(𝑠) = 𝑠0.3.
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Figure 3: Typical behavior of pricing variables. Horizontal axis 𝑡 determines the pool mix
as (1 − 𝑡)𝑋0 + 𝑡𝑋1.

The plot on the left shows:

• The premium rate 𝑅𝑖(𝑡) for each class (blue and orange) and total premium 𝑃(𝑡)
(green). The three lines intersect at a point: this will always occur because the total
premium is a (1 − 𝑡, 𝑡) weighted average of the by-line rates. They need not intersect
at the minimum.

• The horizontal shaded bands show the range from monoline expected loss up to the
monoline premium for each class. Because the capital standard is weak monoline
expected losses are < E[𝑋] by limited liability. Since 𝑋1 is more risky than 𝑋0 it has
a higher monoline premium.

• As discussed above, 𝑅1(1) = 𝑃(1) and it bows up for 𝑡 close to 1. Here 𝑡∗
1 = 0.544.

This reflects the fact it benefits from pooling with 𝑋0. Similar comments apply to 𝑅0
near 𝑡 = 0; its rate is above the monoline rate until 𝑡∗

0 = 0.296. The critical 𝑡 values
are shown in the legend.

• The total premium line only gives the premium for the (1 − 𝑡, 𝑡) weighted pool; it does
not give the total market premium because the blended portfolio can only include all
risks in the special case 𝑡 = 0.5. When 𝑡 ≠ 0.5 the multiline pool with include all of
one class, but the other will be split and partially written in a monoline pool.

By market assumption 1, that insureds are pure price buyers, a market with prices greater
than monoline rates will not be in equilibrium: risks will defect into a cheaper monoline pool.
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Thus the feasible range for a solution is 𝑡∗
0 < 𝑡 < 𝑡∗

1. For 𝑡 < 𝑡∗
0 the pool rate for class 0 is

greater than the monoline rate, so it will not pool. And for 𝑡 > 𝑡∗
1 the same holds for class

1.

We can now determine the market equilibrium.

• If 𝑡∗
0 < 0.5 < 𝑡∗

1 the we are in structure 1 and have complete pooling. If 𝑡 ≠ 0.5 then
risks left in the monoline pool, paying a higher rate, will offer to pool at a slightly more
advantageous proportion, and lower rate, for the other class and the pool unravels. The
pool is only in equilibrium when there are no risks left in monoline pools, i.e., when
𝑡 = 0.5. Examples show this is a very common outcome, especially when the two
classes are of comparable volatility.

• If 𝑡∗
0 > 𝑡∗

1 then we are in structure 2 with no pooling and two monoline pools. The
feasible region only contains the point 𝑡 = 0 = 1, remember 0 and 1 define the same
outcome. This structure occurs for example when 𝑋0, 𝑋1 are very thick tailed and
VaR is not subadditive.

• If 𝑡∗
0 < 𝑡∗

1 < 0.5 then the equilibrium is at 𝑡 = 𝑡∗
1 and we have partial pooling, structure

3. The multiline pool contains all of class 0 and a proportion of class 1. Class 0 gets
the benefits of diversification and pays less than its monoline rate. Class 1 pays its
monoline rate. Class 0 has the negotiating power: it only needs to attract a portion of
the class 1 risks and it knows there are always class 1 risks paying the monoline rate,
so that acts as a bogey. It can offer to pool at a proportion 𝑡∗

1 − 𝜖 for small 𝜖 > 0. This
produces a price 𝑅1(𝑡∗

1 − 𝜖) < 𝑅1(𝑡∗
1) = 𝑅2(1) below the monoline price, which will be

enough to attract as many class 1 risks as needed. If 𝜖 > 0 then the class 1 risks who
remain in a monoline pool, paying a higher rate, have an incentive to offer to pool at a
share 𝑡∗

1 − 𝜖/2 to class 0. The original pool will unravel as this will be a lower price for
class 0. Thus the equilibrium is at 𝑡∗

1. Class 1 has no negotiating power because there
will always be risks in its monoline pool, whereas all class 0 is entirely in the multiline
pool. Similarly if 0.5 < 𝑡∗

0 < 𝑡∗
1 then the multiline pool contains all class 1 and some

of class 0. Now class 0 pays the monoline rate and class 1 benefits from the pooling
with a lower rate. The equilibrium is at 𝑡 = 𝑡∗

0.

All the equilibriums are Pareto optimal because of the shape of 𝑅0(𝑡) and 𝑅1(𝑡) at 𝑡: one is
increasing and one decreasing so it is not possible to make both classes better off. Changing
𝑡 will increase the rate for at least one class.

Returning to fig. 3 we see that its equilibrium is complete pooling, structure 1, since 𝑡∗
0 =

0.206 < 0.5 < 0.544 = 𝑡∗
1.

It is highly unlikely the solution is at the minimum of 𝑃(𝑡). That solution only includes all
risks when the minimum occurs at 𝑡 = 0.5.

If we introduce reinsurance then it can be used in structure 3 to provide a blended rate to
the split class. Suppose class 1 is split. The reinsurer enables a solution with proportion 𝑡
where 𝑡∗

0 < 𝑡 < 𝑡∗
1 by assuming class 1 from the monoline and the pool in return for a blended

rate. However, without an enforcement mechanism this is not a stable solution. Members
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of class 0 have an incentive to offer reinsurance pool participants the true, lower, multiline
rate unless 𝑡 = 𝑡∗

1. In that case the pool would unravel as before.

As the capital standard strengthens the rates bow up less and the feasible region gets broader.
With unlimited liability, i.e., 𝑎 = ∞, the market pricing functional reduces to the investor
functional, which is coherent. In that case pooling is always optimal provided both premiums
are finite. This follows from Proposition 2: for a coherent risk measure the natural allocation
always contains a non-negative margin and is less than the monoline rate (no-undercut).
Thus the natural allocation premium 𝑃1(𝑡) satisfies E[𝑡𝑋1] ≤ 𝑃1(𝑡) ≤ 𝜌(𝑡𝑋1). Since 𝜌
is positive homogeneous, dividing by 𝑡 gives E[𝑋1] ≤ 𝑅1(𝑡) ≤ 𝜌(𝑋1). Note 𝜌(𝑋1) is the
monoline premium for unlimited cover.

The right hand plot of fig. 3 illustrates these points. The two shaded triangles show the
segments bounded by E[𝑋𝑖] and 𝜌(𝑋𝑖). The thicker premium line is within the segment
precisely when the rate is between monoline loss cost and premium. The green band shows
the corresponding bounds for total premium.

The following behaviors are evident.

1. Full pooling is more likely with a stronger capital standard. In the limit of full coverage,
we always get full poling provided the full coverage premiums are both finite. If one or
other premium is infinite full pooling will not be an equilibrium solution. Coherent risk
measures on unbounded variables must sometimes assume infinite values by Delbaen
(2002), Theorem 5.1.

2. For thin tailed lines with log concave densities full pooling is more likely with more
expensive pricing. (Expensive pricing means a greater markup over expected loss.)
The opposite is true for thick tailed lines. Thin tailed lines are concentrated near the
mean and large losses occur when each component has a somewhat above average loss.
In this situation pooling is not greatly beneficial. thick tailed lines are concentrated
away from the mean. A large loss occurs from a large loss on one component and a
small loss on the other. This situation benefits from pooling and results in superior
pooled coverage, which therefore costs more. Thus the market pricing operator fails
to be subadditive.

3. Classes with unbalanced tails are more likely to result in solution 3 than balanced
classes. This follow for the same reason as the second case of 2.

5 Examples
5.1 Structure 2: No Pooling
In fig. 4 𝑋0 is a lognormal with unlimited mean 100 and 𝜎 = 1.5 and 𝑋1 is a very heavy
tailed Pareto with unlimited mean 10 and 𝛼 = 1.2. The right hand plot shows the (green)
premium line bows up from the line connecting the two monoline rates, meaning there can
be no pooled solution. The weighted average of two rates lower than the monoline rates has
to lie below the line connecting them.

In this example 𝑃 (𝑡) has a maximum at 𝑡 < 1 and is actually decreasing for 𝑡 close to 1.
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Figure 4: Market equilibrium structure 2: two monoline pools.

Pooling a small amount of (the much larger) 𝑋0 greatly increases the assets available and
𝑋1 captures an outsize proportion of them in default because of its thick tail. As a result
its absolute premium increases as 𝑡 decreases from 1, not just its premium rate.

Since 𝑋0 is actually quite thick tailed 𝑅0(𝑡) > E[𝑋0] for all 𝑡: the blue rate line stays in the
shaded blue area on the left.

5.2 Structure 3: Partial Pooling
In fig. 6 illustrates several interesting features. 𝑋0 is a lognormal with 𝜎 = 1.5 and unlimited
mean 150; 𝑋1 is Pareto with unlimited mean 50 and 𝛼 = 1.9, so both lines have very thick
tails. The capital standard is VaR 0.9 and pricing uses a proportional hazard 𝑔(𝑠) = 𝑠1/4.

The figure shows the following features.

1. 𝑃1(𝑡) > 𝑃(1) for 𝑡 close to 1.
2. 𝑃 has an inflexion point and is sub-additive for 𝑡 ∈ [0, 0.7] and super-additive for

𝑡 ∈ [0.7, 1.0].
3. The feasible region is very small, approximately [0.628, 0, 647], which does not include

𝑡 = 0.5 and therefore we have partial pooling, structure 2.

The drop in 𝑅1 for 𝑡 close to zero is a numerical artifact.

5.3 A Realistic Example
To draw out different behaviors, the two previous examples use more extreme parameters
that would normally apply to an insurance book. Our final example shows more typical
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Figure 5: Market equilibrium structure 3: partial pooling.

parameter values to illustrate a generic view. It results in a full pooling structure. Class 0 is
gamma, mean 150 and coefficient of variation 0.15 typical for a low limit liability book. Class
1 has a lognormal distribution with a mean of 100 and 𝜎 = 0.3. It represents a higher limit
book. The distortion is 𝑔(𝑠) = 𝑠0.8, which is in-line with distortions calibrated to market
pricing, and the capital standard is Sovlvency II, 𝑝 = 0.995.

It may appear that fig. 6 shows only small differences between classes. Low volatility in-
surance is a very competitive business, written with very thin margins. Figure 7 shows the
implied loss ratios by class. These are comparable with combined ratios, since our model
excludes expenses. The loss ratio differences are material. The equilibrium, 𝑡 = 0.5 shows
class 0 written at 98.4 percent vs. its monoline rate of 97 percent. Class 1 is written at 94.5
percent vs. 93.5 percent. Thus class 0 achieves a 1.4 percentage point decrease in loss ratio
from pooling vs. 1 point for class 1.

5.4 Note on the Computations
The computations underlying each figure were performed using discrete approximations with
216 equally sized buckets and a sample of 21 values of 𝑡 in [0, 1] inclusive. Convolutions are
performed using Fast Fourier Transforms (FFT), Grubel and Hermesmeier (1999), Mildenhall
(2005). The calculations are essentially exact other than a minor discretization error. The
conditional expectations needed for 𝜅𝑖 are also be performed using a FFT
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Figure 6: Market equilibrium structure 1: full pooling with parameters reflecting a liability
and property insurance portfolio.
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Figure 7: Loss ratios by class across different portfolio corresponding to fig. 6.
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6 Conclusions
We have presented a novel but realistic model of a two class insurance market. The market
includes a compulsory insurance requirement, capital regulation, and costly capital but oth-
erwise is efficient. Depending on the aggregate loss characteristics of the two risk classes the
Pareto optimal market equilibrium can be two monoline pools, a monoline and a multiline
pool, or one multiline pool. In general when the classes are comparably risky there is one
multiline pool. When a more risky class is combined with a less risky one, the less risky class
often gets the benefit of pooling and pays a rate below its monoline premium while the more
risky class pays its monoline premium. Stricter capital standards make more complete pool-
ing more likely because it increases the importance of economizing on capital. There is no
pooling when the risk have extremely thick tails and the capital standard is not subadditive.

Reinsurance can be used to pool premium rates, but without an enforcement mechanism it
does not provide a stable solution.

The results are consistent with observed market structure in US property-casualty insurance,
where more volatile lines are often written by monoline companies. Florida homeowners and
medical malpractice liability are two examples. It is also consistent with the existence of
highly leveraged, low risk pools, such as monoline auto writers.
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